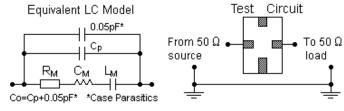


SAW RESONATOR Part Number: VTR44774

The **VTR44774** is a true one-port, surface-acoustic-wave (**SAW**) resonator in a surface-mount ceramic **QCC4A** case. It provides reliable, fundamental-mode, quartz frequency stabilization i.e. in transmitters or local oscillators operating at **447.725** MHz.

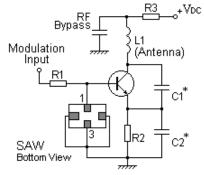
1. Package Dimension (QCC4A)

Pin	Configuration		
1	Input / Output		
3	Output / Input		
2/4	Case Ground		

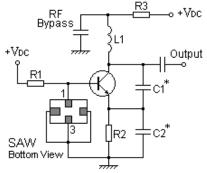

Sign	Data (unit: mm)	Sign	Data (unit: mm)
А	1.2	D	1.4
В	0.8	Е	5.0
С	0.5	F	3.5

2. Marking

VTR 44774


Laser Marking

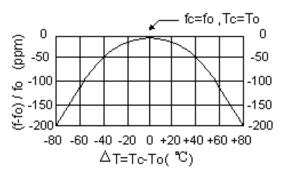
3. Equivalent LC Model and Test Circuit



4. Typical Application Circuits

1) Low-Power Transmitter Application

2) Local Oscillator Application



5. Typical Frequency Response

6. Temperature Characteristics

				Me	as1:M	6r1 4	47.72 -1.45	
 	-	 	-	\square				
					\setminus			
					\mathbf{n}			
					\square	1		
						7		
						V		
 -	+		1					

The curve shown above accounts for resonator contribution only and does not include oscillator temperature characteristics.

7. Performance

7-1. Maximum Ratings

Rating	Value	Unit	
CW RF Power Dissipation	Р	0	dBm
DC Voltage Between Terminals	V _{DC}	±30	V
Storage Temperature Range	$T_{\rm stg}$	-40 to +85	°C
Operating Temperature Range	T _A	-10 to +60	°C

7-2. Electronic Characteristics

	Characteristic	Sym	Minimum	Typical	Maximum	Unit
Center Frequency (+25℃)	Absolute Frequency	f _C	447.650		447.800	MHz
	Tolerance from 447.725 MHz	Δf_{C}		±75		kHz
Insertion Loss		IL		1.6	2.2	dB
Quelity Factor	Unloaded Q	QU		11,100		
Quality Factor	50 Ω Loaded Q	QL		1,850		
	Turnover Temperature	T ₀	25		55	°C
Temperature Stability	Turnover Frequency	f ₀		f _C		kHz
	Frequency Temperature Coefficient	FTC		0.032		ppm/℃²
Frequency Aging Absolute Value during the First Year		f _A		≤10		ppm/yr
DC Insulation Resistance Between Any Two Terminals			1.0			MΩ
	Motional Resistance	R _M		20	29	Ω
RF Equivalent RLC Model	Motional Inductance	L _M		78.9554		μH
	Motional Capacitance	См		1.60205		fF
	Shunt Static Capacitance	C ₀	1.60	1.90	2.20	pF

 $\textcircled{\begin{tabular}{ll} \begin{tabular}{ll} \hline \begin{tabular}{ll}$

- Electronics Limited
- 1. The center frequency, f_c , is measured at the minimum IL point with the resonator in the 50 Ω test system.
- 2. Unless noted otherwise, case temperature $T_c = +25^{\circ}C \pm 2^{\circ}C$.
- Frequency aging is the change in f_C with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 4. Turnover temperature, T_0 , is the temperature of maximum (or turnover) frequency, f_0 . The nominal frequency at any case temperature, T_c , may be calculated from: $f = f_0 [1 FTC (T_0 T_c)^2]$.
- 5. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C₀ is the measured static (nonmotional) capacitance between the two terminals. The measurement includes case parasitic capacitance.
- 6. Derived mathematically from one or more of the following directly measured parameters: f_C, IL, 3 dB bandwidth, f_C versus T_C, and C₀.
- 7. The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- 8. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 9. Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- 10. For questions on technology, prices and delivery, please contact our sales offices or e-mail info@v-torch.com