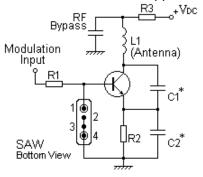


SAW RESONATOR Part Number: VTR433F

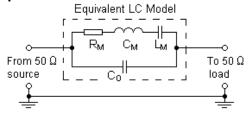
The **VTR433F** is a true one-port, surface-acoustic-wave (**SAW**) resonator in a low-profile metal **F-11** case. It provides reliable, fundamental-mode, quartz frequency stabilization i.e. in transmitters or local oscillators operating at **433.920** MHz.

1. Package Dimension (F-11)

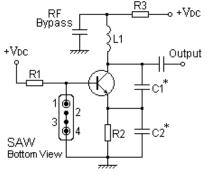
Pin	Configuration		
1, 4	Input / Output		
2/3	Case Ground		
Dimensions	Data (unit: mm)		
А	11.0±0.3		
В	4.5±0.3		
С	3.2±0.3		
D	0.45±0.1		
E	5.0±0.5		
F	2.54±0.2		


2. Marking

VTR433F


Ink Marking Color: Black or Blue

4. Typical Application Circuits


1) Low-Power Transmitter Application

3. Equivalent LC Model and Test Circuit

2) Local Oscillator Application

5. Typical Frequency Response

6. Temperature Characteristics

 1: Transmission /M Log Mag
 5.0 dB/ Ref
 -1.50 dB

 p2: Transmission
 Ch1: Mkr1
 433.915 MH2

 -1.08 dB
 -1.08 dB

 1
 -1.08 dB

 1
 -1.08 dB

 1
 -1.08 dB

 2
 -1.08 dB

 1
 -1.08 dB

 1
 -1.08 dB

 1
 -1.08 dB

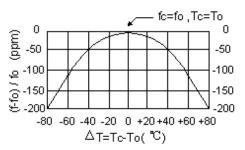
 2
 -1.08 dB

 1
 -1.08 dB

 1
 -1.08 dB

 2
 -1.08 dB

 1
 -1.08 dB


 2
 -1.08 dB

 3
 -1.08 dB

 1
 -1.08 dB

 2
 -1.08 dB

 3
 -1.08 dB

The curve shown above accounts for resonator contribution only and does not include oscillator temperature characteristics.

7. Performance

7-1.Maximum Ratings

Rating		Value	Unit
CW RF Power Dissipation	Ρ	0	dBm
DC Voltage Between Any two Pins	V _{DC}	±30	V
Storage Temperature Range	T _{stg}	-40 to +85	°C
Operating Temperature Range	TA	-10 to +60	°C

7-2. Electronic Characteristics

	Characteristic	Sym	Minimum	Typical	Maximum	Unit
Center Frequency (+25℃)	Absolute Frequency	f _C	433.845		433.995	MHz
	Tolerance from 433.920MHz	Δf_{C}		±75		kHz
Insertion Loss		IL		1.5	2.2	dB
Quality Factor	Unloaded Q	Q _U		10,350		
	50 Ω Loaded Q	QL		1,650		
Temperature Stability	Turnover Temperature	T ₀	25		55	°C
	Turnover Frequency	f ₀		f _c		kHz
	Frequency Temperature Coefficient	FTC		0.032		ppm/℃²
Frequency Aging Absolute Value during the First Year		f _A		≤10		ppm/yr
DC Insulation Resistance Between Any Two Pins			1.0			MΩ
RF Equivalent RLC Model	Motional Resistance	R _M		19	29	Ω
	Motional Inductance	L _M		72.0546		μH
	Motional Capacitance	См		1.8690		fF
	Pin 1 to Pin 4 Static Capacitance	C ₀	1.8	2.1	2.4	pF

(i)CAUTION: Electrostatic Sensitive Device. Observe precautions for handling!

- Electronics Limited
- 1. The center frequency, f_c , is measured at the minimum IL point with the resonator in the 50 Ω test system.
- 2. Unless noted otherwise, case temperature $T_c = +25^{\circ}C \pm 2^{\circ}C$.
- Frequency aging is the change in f_C with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 4. Turnover temperature, T_0 , is the temperature of maximum (or turnover) frequency, f_0 . The nominal frequency at any case temperature, T_c , may be calculated from: $f = f_0 [1 FTC (T_0 T_c)^2]$.
- 5. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C₀ is the measured static (nonmotional) capacitance between Pin1 and Pin4. The measurement includes case parasitic capacitance.
- 6. Derived mathematically from one or more of the following directly measured parameters: f_C, IL, 3 dB bandwidth, f_C versus T_C, and C₀.
- 7. The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- 8. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 9. Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- 10. For questions on technology, prices and delivery, please contact our sales offices or e-mail info@v-torch.com