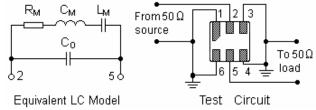


SAW RESONATOR Part Number: VTR62202

The **VTR62202** is a true one-port, surface-acoustic-wave (**SAW**) resonator in a surface-mount ceramic **DCC6** case. It provides reliable, fundamental-mode, quartz frequency stabilization i.e. in transmitters or local oscillators operating at **622.080** MHz.

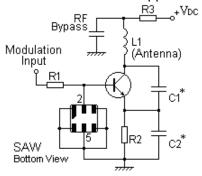
1. Package Dimension (DCC6)

Pin	Configuration			
2	Input / Output			
5	Output / Input			
1, 3, 4, 6	Ground			

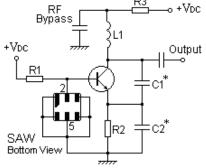

Sign	Data (unit: mm)	Sign	Data (unit: mm)	
А	1.9	Е	1.2	
В	0.64	F	3.8	
С	1.0	G	3.8	
D	1.27			

2. Marking

VTR 62202


Laser Marking

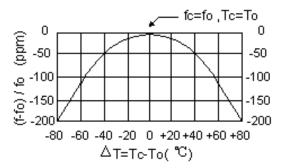
3. Equivalent LC Model and Test Circuit



4. Typical Application Circuits

1) Low-Power Transmitter Application

2) Local Oscillator Application



5. Typical Frequency Response

6. Temperature Characteristics

▶1:Transmission /M Log Mag 5.0 dB/ Ref -1.50 dB ▷2:Off Meas1:Mkr1 622.000 MHz -1.448dB

The curve shown above accounts for resonator contribution only and does not include oscillator temperature characteristics.

7. Performance

Center 622.080 MHz

7-1. Maximum Ratings

Rating	Value	Unit	
CW RF Power Dissipation	Р	0	dBm
DC Voltage Between Terminals	V _{DC}	±30	V
Storage Temperature Range	$T_{\rm stg}$	-40 to +85	°C
Operating Temperature Range	T _A	-10 to +60	°C

Span 1.000 MHz

7-2. Electronic Characteristics

	Characteristic	Sym	Minimum	Typical	Maximum	Unit
Center Frequency (+25℃)	Absolute Frequency	f _C	622.005		622.155	MHz
	Tolerance from 622.080 MHz	Δf_{C}		±75		kHz
Insertion Loss		IL		1.5	2.0	dB
Quality Factor	Unloaded Q	Q _U		9,700		
	50 Ω Loaded Q	QL		1,550		
Temperature Stability	Turnover Temperature	T ₀	25		55	°C
	Turnover Frequency	f ₀		f _C		kHz
	Frequency Temperature Coefficient	FTC		0.032		ppm/℃ ²
Frequency Aging Absolute Value during the First Year		fA		≤10		ppm/yr
DC Insulation Resistance Between Any Two Pins			1.0			MΩ
RF Equivalent RLC Model	Motional Resistance	R _M		19	26	Ω
	Motional Inductance	L _M		47.2142		μH
	Motional Capacitance	См		1.38776		fF
	Shunt Static Capacitance	C ₀	1.10	1.30	1.50	pF

(i) CAUTION: Electrostatic Sensitive Device. Observe precautions for handling!

- Electronics Limited
- 1. The center frequency, f_c , is measured at the minimum IL point with the resonator in the 50 Ω test system.
- 2. Unless noted otherwise, case temperature $T_c = +25^{\circ}C\pm 2^{\circ}C$.
- Frequency aging is the change in f_C with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 4. Turnover temperature, T_0 , is the temperature of maximum (or turnover) frequency, f_0 . The nominal frequency at any case temperature, T_c , may be calculated from: $f = f_0 [1 FTC (T_0 T_c)^2]$.
- 5. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C₀ is the measured static (nonmotional) capacitance between the two terminals. The measurement includes case parasitic capacitance.
- 6. Derived mathematically from one or more of the following directly measured parameters: f_C, IL, 3 dB bandwidth, f_C versus T_C, and C₀.
- 7. The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- 8. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 9. Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- 10. For questions on technology, prices and delivery, please contact our sales offices or e-mail info@v-torch.com