

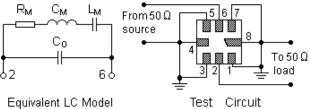
SAW RESONATOR

Part Number: VTR41755

The **VTR41755** is a true one-port, surface-acoustic-wave (**SAW**) resonator in a surface-mount ceramic **QCC8C** case. It provides reliable, fundamental-mode, quartz frequency stabilization i.e. in transmitters or local oscillators operating at **417.500** MHz.

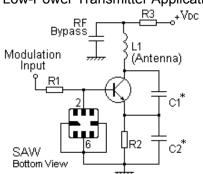
1. Package Dimension (QCC8C)

Pin	Configuration		
2	Terminal1		
6	Terminal2		
4,8	Case Ground		
1,3,5,7	Empty		

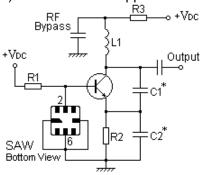

Sign	Data (unit: mm)	Sign Data (unit: mm	
Α	2.08	E	1.2
В	0.6	F	1.35
С	1.27	G	5.0
D	2.54	Н	5.0

2. Marking

VTR 41755


Laser Marking

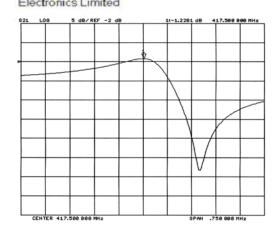
3. Equivalent LC Model and Test Circuit

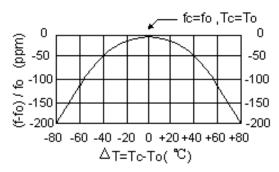


4. Typical Application Circuits

1) Low-Power Transmitter Application

2) Local Oscillator Application




5.Typical Frequency Response

6. Temperature Characteristics

www.v-torch.com Tel: 86-755-8363 5090 Fax: 86-755-8950 7007 Page 1 of 3

V.TORCH

The curve shown above accounts for resonator contribution only and does not include oscillator temperature characteristics.

7. Performance

7-1. Maximum Ratings

Rating		Value	Unit
CW RF Power Dissipation	Р	0	dBm
DC Voltage Between Terminals	V_{DC}	±30	V
Storage Temperature Range	$T_{ m stg}$	-40 to +85	$^{\circ}$ C
Operating Temperature Range	T _A	-10 to +60	$^{\circ}$

7-2. Electronic Characteristics

	Characteristic	Sym	Minimum	Typical	Maximum	Unit
Center Frequency (+25℃)	Absolute Frequency	f _C	417.425		417.575	MHz
	Tolerance from 417.500 MHz	Δf_{C}		±75		kHz
Insertion Loss		IL		1.5	2.0	dB
Quality Factor	Unloaded Q	Q _U		10,520		
	50 Ω Loaded Q	Q_L		1,680		
Temperature Stability	Turnover Temperature	T ₀	25		55	$^{\circ}$
	Turnover Frequency	f ₀		f _C		kHz
	Frequency Temperature Coefficient	FTC		0.032		ppm/°C²
Frequency Aging Absolute Value during the First Year		f _A		≤10		ppm/yr
DC Insulation Resistance Between Any Two Terminals			1.0			МΩ
RF Equivalent RLC Model	Motional Resistance	R _M		19	26	Ω
	Motional Inductance	L _M		76.25005		μΗ
	Motional Capacitance	См		1.9078		fF
	Shunt Static Capacitance	C ₀	1.80	2.05	2.30	pF

(i) CAUTION: Electrostatic Sensitive Device. Observe precautions for handling!

1. The center frequency, f_C , is measured at the minimum IL point with the resonator in the 50Ω test system.

www.v-torch.com Tel: 86-755-8363 5090 Fax: 86-755-8950 7007 Page 2 of 3

- 2. Unless noted otherwise, case temperature $T_C = +25^{\circ}C \pm 2^{\circ}C$.
- Frequency aging is the change in f_C with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- Turnover temperature, T₀, is the temperature of maximum (or turnover) frequency, f₀. The nominal frequency at any case temperature, T_C , may be calculated from: $f = f_0 [1 - FTC (T_0 - T_C)^2]$.
- This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C₀ is the measured static (nonmotional) capacitance between the two terminals. The measurement includes case parasitic capacitance.
- Derived mathematically from one or more of the following directly measured parameters: f_C, IL, 3 dB bandwidth, $f_{\mathbb{C}}$ versus $T_{\mathbb{C}}$, and C_0 .

 The specifications of this device are based on the test circuit shown above and subject to change or
- obsolescence without notice.
- Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- 10. For questions on technology, prices and delivery, please contact our sales offices or e-mail info@v-torch.com

www.v-torch.com Tel: 86-755-8363 5090 Fax: 86-755-8950 7007 Page 3 of 3