

SAW RESONATOR Part Number: VTR433W

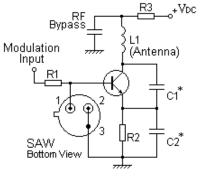
The **VTR433W** is a true one-port, surface-acoustic-wave (**SAW**) resonator in a low-profile metal **TO-39** case. It provides reliable, fundamental-mode, quartz frequency stabilization i.e. in transmitters or local oscillators operating at **433.920** MHz.

1. Package Dimension (TO-39)

Pin	Configuration		
1	Input / Output		
2	Output / Input		
3	Case Ground		

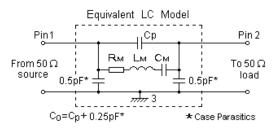
Dimension	Data (unit: mm)			
А	9.15±0.20			
В	5.08±0.20			
С	3.30±0.20			
D	3±0.20/5±0.20			
E	0.45±0.10			

2. Marking

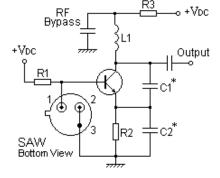

VTR

433W

Ink Marking Color: Black or Blue

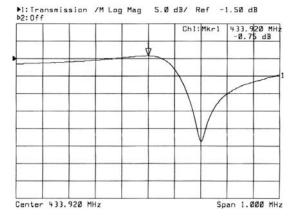

4. Typical Application Circuits

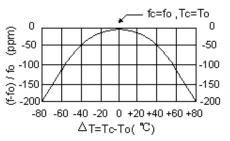
1) Low-Power Transmitter Application



5. Typical Frequency Response

3. Equivalent LC Model and Test Circuit




2) Local Oscillator Application

6. Temperature Characteristics

The curve shown above accounts for resonator contribution only and does not include oscillator temperature characteristics.

7. Performance

7-1.Maximum Ratings

Rating	Value	Unit	
CW RF Power Dissipation	Р	0	dBm
DC Voltage Between Any two Pins	V _{DC}	±30	V
Storage Temperature Range	T _{stg}	-40 to +85	°C
Operating Temperature Range	T _A	-10 to +60	°C

7-2. Electronic Characteristics

	Characteristic	Sym	Minimum	Typical	Maximum	Unit
Center Frequency (+25℃)	Absolute Frequency	f _C	433.845		433.995	MHz
	Tolerance from 433.920 MHz	Δf_{C}		±75		kHz
Insertion Loss		IL		1.1	1.6	dB
Quality Factor	Unloaded Q	Qu		10,100		
	50 Ω Loaded Q	QL		1,200		
Temperature Stability	Turnover Temperature	T ₀	25	39	55	°C
	Turnover Frequency	f ₀		f _C		kHz
	Frequency Temperature Coefficient	FTC		0.032		ppm/℃²
Frequency Aging Absolute Value during the First Year		f _A		≤10		ppm/yr
DC Insulation Resistance Between Any Two Pins			1.0			MΩ
RF Equivalent RLC Model	Motional Resistance	R _M		13.5	20	Ω
	Motional Inductance	L _M		49.9813		μH
	Motional Capacitance	См		2.6943		fF
	Pin 1 to Pin 2 Static Capacitance	C ₀	2.25	2.55	2.85	pF

(i)CAUTION: Electrostatic Sensitive Device. Observe precautions for handling!

- 1. The center frequency, f_c , is measured at the minimum IL point with the resonator in the 50 Ω test system.
- Unless noted otherwise, case temperature $T_C = +25^{\circ}C \pm 2^{\circ}C$. 2.
- Frequency aging is the change in f_c with time and is specified at +65°C or less. Aging may exceed the 3.

Electronics Limited

decreasing in subsequent years.

- 4. Turnover temperature, T₀, is the temperature of maximum (or turnover) frequency, f₀. The nominal frequency at any case temperature, T_c, may be calculated from: $f = f_0 [1 FTC (T_0 T_c)^2]$.
- 5. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C₀ is the measured static (nonmotional) capacitance between Pin1 and Pin2. The measurement includes case parasitic capacitance.
- 6. Derived mathematically from one or more of the following directly measured parameters: f_c , IL, 3 dB bandwidth, f_c versus T_c , and C_0 .
- 7. The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- 8. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 9. Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- 10. For questions on technology, prices and delivery, please contact our sales offices or e-mail info@v-torch.com