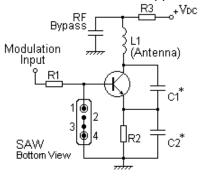


SAW RESONATOR Part Number: VTR432F

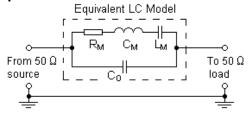
The **VTR432F** is a true one-port, surface-acoustic-wave (**SAW**) resonator in a low-profile metal **F-11** case. It provides reliable, fundamental-mode, quartz frequency stabilization i.e. in transmitters or local oscillators operating at **432.000** MHz.

1. Package Dimension (F-11)

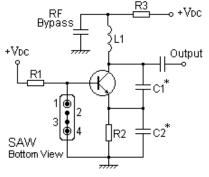
Pin	Configuration			
1, 4	Input / Output			
2/3	Case Ground			
Dimensions	Data (unit: mm)			
А	11.0±0.3			
В	4.5±0.3			
С	3.2±0.3			
D	0.45±0.1			
E	5.0±0.5			
F	2.54±0.2			


2. Marking

VTR432F

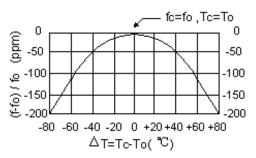

Ink Marking Color: Black or Blue

4. Typical Application Circuits


1) Low-Power Transmitter Application

3. Equivalent LC Model and Test Circuit

2) Local Oscillator Application


5. Typical Frequency Response

6. Temperature Characteristics

Electronics Ennited

			Me	asi:M	kr1 4	32.00 -0.80	
		4	×				
 				$\overline{\}$			
					\mathbf{i}		
						1	
	-					1	

The curve shown above accounts for resonator contribution only and does not include oscillator temperature characteristics.

7. Performance

7-1.Maximum Ratings

Rating	Value	Unit	
CW RF Power Dissipation	Ρ	0	dBm
DC Voltage Between Any two Pins	V _{DC}	±30	V
Storage Temperature Range	T _{stg}	-40 to +85	°C
Operating Temperature Range	TA	-10 to +60	°C

7-2. Electronic Characteristics

	Characteristic	Sym	Minimum	Typical	Maximum	Unit
Center Frequency (+25℃)	Absolute Frequency	f _C	431.925		432.075	MHz
	Tolerance from 432.000 MHz	Δf_{C}		±75		kHz
Insertion Loss	Insertion Loss			1.2	1.8	dB
Quality Factor	Unloaded Q	Q _U		11,500		
	50 Ω Loaded Q	QL		1,500		
Temperature Stability	Turnover Temperature	T ₀	25		55	°C
	Turnover Frequency	f ₀		f _C		kHz
	Frequency Temperature Coefficient	FTC		0.032		ppm/℃²
Frequency Aging Absolute Value during the First Year		f _A		≤10		ppm/yr
DC Insulation Resis	tance Between Any Two Pins		1.0		MΩ	
RF Equivalent RLC Model	Motional Resistance	R _M		15	23	Ω
	Motional Inductance	L _M		63.5837		μH
	Motional Capacitance	См		2.1368		fF
	Pin 1 to Pin 4 Static Capacitance	C ₀	1.80	2.10	2.40	pF

(i)CAUTION: Electrostatic Sensitive Device. Observe precautions for handling!

- Electronics Limited
- 1. The center frequency, f_c , is measured at the minimum IL point with the resonator in the 50 Ω test system.
- 2. Unless noted otherwise, case temperature $T_c = +25^{\circ}C \pm 2^{\circ}C$.
- Frequency aging is the change in f_C with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 4. Turnover temperature, T_0 , is the temperature of maximum (or turnover) frequency, f_0 . The nominal frequency at any case temperature, T_c , may be calculated from: $f = f_0 [1 FTC (T_0 T_c)^2]$.
- 5. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C₀ is the measured static (nonmotional) capacitance between Pin1 and Pin4. The measurement includes case parasitic capacitance.
- 6. Derived mathematically from one or more of the following directly measured parameters: f_C, IL, 3 dB bandwidth, f_C versus T_C, and C₀.
- 7. The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- 8. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 9. Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.

10.For questions on technology, prices and delivery, please contact our sales offices or e-mail info@v-torch.com