

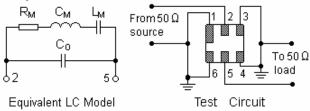
SAW RESONATOR

Part Number: VTR43341

The VTR43341is a true one-port, surface-acoustic-wave (SAW) resonator in a surface-mount ceramic DCC6C case. It provides reliable, fundamental-mode, quartz frequency stabilization i.e. in transmitters or local oscillators operating at 433.420 MHz.

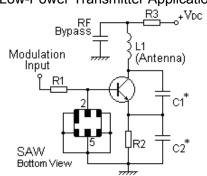
1. Package Dimension (DCC6C)

Pin	Configuration		
2	Input / Output		
5	Output / Input		
1, 3, 4, 6	Ground		

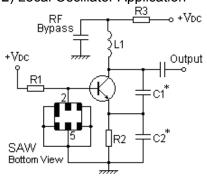

Sign	Data (unit: mm)	Sign	Data (unit: mm)		
Α	0.6	E	1.1		
В	1.5	F	3.0		
С	1.5	G	3.0		
D	1.8				

2. Marking

VTR 43341


Laser Marking

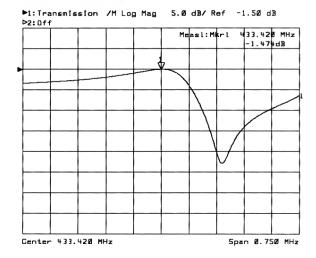
3. Equivalent LC Model and Test Circuit

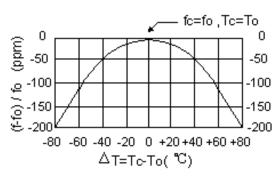


4. Typical Application Circuits

1) Low-Power Transmitter Application

2) Local Oscillator Application




5. Typical Frequency Response

6.Temperature Characteristics

www.v-torch.com Tel: 86-755-8363 5090 Fax: 86-755-8950 7007 Page 1 of 3

The curve shown above accounts for resonator contribution only and does not include oscillator temperature characteristics.

7. Performance

7-1.Maximum Ratings

Rating	Value	Unit	
CW RF Power Dissipation	Р	0	dBm
DC Voltage Between Terminals	V_{DC}	±30	V
Storage Temperature Range	$T_{ m stg}$	-40 to +85	$^{\circ}$
Operating Temperature Range	T_{A}	-10 to +60	$^{\circ}$

7-2. Electronic Characteristics

Characteristic		Sym	Minimum	Typical	Maximum	Unit
Center Frequency (+25°C)	Absolute Frequency	f _C	433.345		433.495	MHz
	Tolerance from 433.420 MHz	Δf_{C}		±75		kHz
Insertion Loss		IL		1.6	2.0	dB
Quality Factor	Unloaded Q	Q _U		9,900		
	50 Ω Loaded Q	Q_L		1,650		
Temperature Stability	Turnover Temperature	T ₀	25		55	$^{\circ}$
	Turnover Frequency	f ₀		$f_{\mathbb{C}}$		kHz
	Frequency Temperature Coefficient	FTC		0.032		ppm/℃²
Frequency Aging Absolute Value during the First Year		fA		≤10		ppm/yr
DC Insulation Resistance Between Any Two Terminals			1.0			MΩ
RF Equivalent RLC Model	Motional Resistance	R _M		20	26	Ω
	Motional Inductance	L _M		72.7439		μН
	Motional Capacitance	См	_	1.8555	_	fF
	Shunt Static Capacitance	C ₀	1.80	2.10	2.40	pF

(i) CAUTION: Electrostatic Sensitive Device. Observe precautions for handling!

www.v-torch.com Tel: 86-755-8363 5090 Fax: 86-755-8950 7007 Page 2 of 3

- 1. The center frequency, f_C , is measured at the minimum IL point with the resonator in the 50Ω test system.
- Unless noted otherwise, case temperature T_C = +25°C±2°C.
- Frequency aging is the change in f_C with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 4. Turnover temperature, T_0 , is the temperature of maximum (or turnover) frequency, f_0 . The nominal frequency at any case temperature, T_C , may be calculated from: $f = f_0 [1 FTC (T_0 T_C)^2]$.
- 5. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C₀ is the measured static (nonmotional) capacitance between the two terminals. The measurement includes case parasitic capacitance.
- Derived mathematically from one or more of the following directly measured parameters: f_C, IL, 3 dB bandwidth, f_C versus T_C, and C₀.
- 7. The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- 8. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 9. Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- 10. Forquestions on technology, prices and delivery, please contact our sales offices or e-mail info@v-torch.com.

www.v-torch.com Tel: 86-755-8363 5090 Fax: 86-755-8950 7007 Page 3 of 3