
SAW RESONATOR

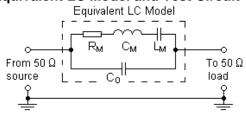
Part Number: VTR868F

The **VTR868F** is a true one-port, surface-acoustic-wave (**SAW**) resonator in a low-profile metal **F-11** case. It provides reliable, fundamental-mode, quartz frequency stabilization i.e. in transmitters or local oscillators operating at **868.350** MHz.

1. Package Dimension (F-11)

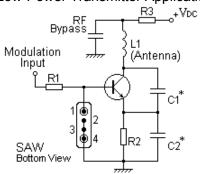
Pin	Configuration		
1, 4	Input / Output		
2/3	Case Ground		

Dimensions	Data (unit: mm)			
А	11.0±0.3			
В	4.5±0.3			
С	3.2±0.3			
D	0.45±0.1			
Е	5.0±0.5			
F	2.54±0.2			

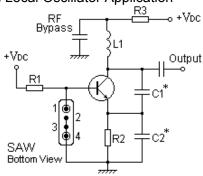

2. Marking

VTR868F

Ink Marking


Color: Black or Blue

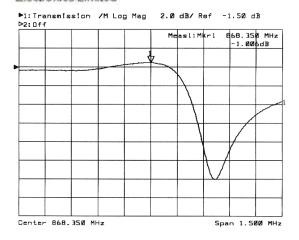
3. Equivalent LC Model and Test Circuit

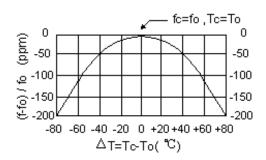


4. Typical Application Circuits

1) Low-Power Transmitter Application

2) Local Oscillator Application




5. Typical Frequency Response

6. Temperature Characteristics

www.v-torch.com Tel: 86-755-8363 5090 Fax: 86-755-8950 7007 Page 1 of 3

The curve shown above accounts for resonator contribution only and does not include oscillator temperature characteristics.

7. Performance

7-1.Maximum Ratings

Rating	Value	Unit	
CW RF Power Dissipation	Р	0	dBm
DC Voltage Between Any two Pins	V_{DC}	±30	V
Storage Temperature Range	$T_{ m stg}$	-40 to +85	$^{\circ}$
Operating Temperature Range	T_{A}	-10 to +60	$^{\circ}$

7-2. Electronic Characteristics

	Characteristic	Sym	Minimum	Typical	Maximum	Unit
Center Frequency (+25°C)	Absolute Frequency	f _C	868.200		868.500	MHz
	Tolerance from 868.350 MHz	Δf_{C}		±150		kHz
Insertion Loss		IL		1.3	1.8	dB
Quality Factor	Unloaded Q	Q _U		11,600		
	50 Ω Loaded Q	Q_L		1,600		
Temperature Stability	Turnover Temperature	T ₀	25		55	$^{\circ}$ C
	Turnover Frequency	f ₀		f _C		kHz
	Frequency Temperature Coefficient	FTC		0.032		ppm/°C²
Frequency Aging Absolute Value during the First Year		f _A		≤10		ppm/yr
DC Insulation Resistance Between Any Two Pins			1.0			ΜΩ
RF Equivalent RLC Model	Motional Resistance	R _M		16	23	Ω
	Motional Inductance	L _M		34.0348		μН
	Motional Capacitance	См		0.9880		fF
	Pin 1 to Pin 4 Static Capacitance	C ₀	1.80	2.10	2.40	pF

(i) CAUTION: Electrostatic Sensitive Device. Observe precautions for handling!

www.v-torch.com Tel: 86-755-8363 5090 Fax: 86-755-8950 7007 Page 2 of 3

- 1. The center frequency, f_C , is measured at the minimum IL point with the resonator in the 50Ω test system.
- Unless noted otherwise, case temperature T_C = +25°C±2°C.
- 3. Frequency aging is the change in f_C with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 4. Turnover temperature, T₀, is the temperature of maximum (or turnover) frequency, f₀. The nominal frequency at any case temperature, T_C, may be calculated from: f = f₀ [1 FTC (T₀ T_C)²].
- 5. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C₀ is the measured static (nonmotional) capacitance between Pin1 and Pin4. The measurement includes case parasitic capacitance.
- Derived mathematically from one or more of the following directly measured parameters: f_C, IL, 3 dB bandwidth, f_C versus T_C, and C_D.
- The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 9. Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- 10. For questions on technology, prices and delivery, please contact our sales offices or e-mail info@v-torch.com

www.v-torch.com Tel: 86-755-8363 5090 Fax: 86-755-8950 7007 Page 3 of 3