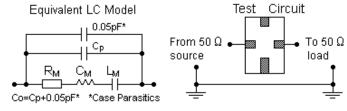


SAW RESONATOR Part Number: VTR43394

The **VTR43394** is a true one-port, surface-acoustic-wave (**SAW**) resonator in a surface-mount ceramic **QCC4A** case. It provides reliable, fundamental-mode, quartz frequency stabilization i.e. in transmitters or local oscillators operating at **433.920** MHz.

1. Package Dimension (QCC4A)

Pin	Configuration
1	Input / Output
3	Output / Input
2/4	Case Ground

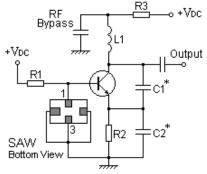

Sign	Data (unit: mm)	Sign	Data (unit: mm)
А	1.2	D	1.4
В	0.8	Е	5.0
С	0.5	F	3.5

2. Marking

VTR 43394

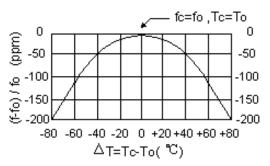
Laser Marking

3. Equivalent LC Model and Test Circuit



4. Typical Application Circuits

1) Low-Power Transmitter Application



5. Typical Frequency Response

6. Temperature Characteristics

			Ch1:	Mkr1	433.9	ØØ MH 6 dB
		$\frac{1}{\nabla}$		<i>c</i>		
			\			
			Λ	/		
			\square			
			V			

The curve shown above accounts for resonator contribution only and does not include oscillator temperature characteristics.

7. Performance

7-1. Maximum Ratings

Rating		Value	Unit
CW RF Power Dissipation	Р	0	dBm
DC Voltage Between Terminals	V _{DC}	±30	V
Storage Temperature Range	$T_{\rm stg}$	-40 to +85	°C
Operating Temperature Range	T _A	-10 to +60	°C

7-2. Electronic Characteristics

	Characteristic	Sym	Minimum	Typical	Maximum	Unit
Center Frequency	Absolute Frequency	f _C	433.845		433.995	MHz
(+25℃)	Tolerance from 433.920 MHz	Δf_{C}		±75		kHz
Insertion Loss		ΙL		1.5	2.0	dB
Quality Easter	Unloaded Q	Q _U		9,000	433.995	
Quality Factor	50 Ω Loaded Q	QL		1,500		
	Turnover Temperature	T ₀	25		55	°C
Temperature Stability	Turnover Frequency	f ₀		f _C		kHz
	Frequency Temperature Coefficient	FTC		0.032	433.995 2.0 55 26	ppm/℃²
Frequency Aging	Absolute Value during the First Year	fA		≤10		ppm/yr
DC Insulation Resis	tance Between Any Two Terminals		1.0			MΩ
	Motional Resistance	R _M		19	26	Ω
RF Equivalent	Motional Inductance	L _M		65.5042		μH
RLC Model	Motional Capacitance	См		2.0559		fF
	Shunt Static Capacitance	C ₀	1.9	2.2	2.5	pF

(i) CAUTION: Electrostatic Sensitive Device. Observe precautions for handling!

1. The center frequency, f_c , is measured at the minimum IL point with the resonator in the 50 Ω test system.

- Electronics Limited
- 2. Unless noted otherwise, case temperature $T_C = +25^{\circ}C \pm 2^{\circ}C$.
- Frequency aging is the change in f_c with time and is specified at +65°C or less. Aging may exceed the 3. specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- Turnover temperature, T₀, is the temperature of maximum (or turnover) frequency, f₀. The nominal frequency at 4. any case temperature, T_c, may be calculated from: $f = f_0 [1 - FTC (T_0 - T_c)^2]$.
- 5. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C_0 is the measured static (nonmotional) capacitance between the two terminals. The measurement includes case parasitic capacitance.
- Derived mathematically from one or more of the following directly measured parameters: f_C, IL, 3 dB bandwidth, 6. $f_{\rm C}$ versus $T_{\rm C}$, and $C_{\rm 0}$. The specifications of this device are based on the test circuit shown above and subject to change or
- 7. obsolescence without notice.
- Typically, equipment utilizing this device requires emissions testing and government approval, which is the 8. responsibility of the equipment manufacturer.
- Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, 9. processes and circuits implemented within components or assemblies.

10. For guestions on technology, prices and delivery, please contact our sales offices or e-mail info@y-torch.com