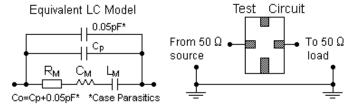


SAW RESONATOR Part Number: VTR90434

The **VTR90434** is a true one-port, surface-acoustic-wave (**SAW**) resonator in a surface-mount ceramic **QCC4A** case. It provides reliable, fundamental-mode, quartz frequency stabilization i.e. in transmitters or local oscillators operating at **904.300** MHz.

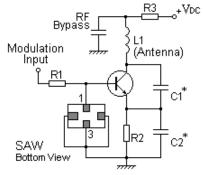
1. Package Dimension (QCC4A)

Pin	Configuration
1	Input / Output
3	Output / Input
2/4	Case Ground

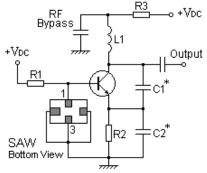

Sign	Data (unit: mm)	Sign	Data (unit: mm)
А	1.2	D	1.4
В	0.8	Е	5.0
С	0.5	F	3.5

2. Marking

VTR 90434


Laser Marking

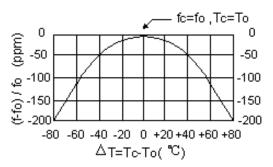
3. Equivalent LC Model and Test Circuit



4. Typical Application Circuits

1) Low-Power Transmitter Application

2) Local Oscillator Application


5. Typical Frequency Response

6. Temperature Characteristics

Electronics Limited

			Me	asl:M	kri 9	Ø4.3Ø -3.11	
		Š	2				
			\backslash				
 	Τ						
				\backslash			
					1		
				$\left \right $			

The curve shown above accounts for resonator contribution only and does not include oscillator temperature characteristics.

7. Performance

7-1. Maximum Ratings

Rating		Value	Unit
CW RF Power Dissipation	Р	0	dBm
DC Voltage Between Terminals	V _{DC}	± 30	V
Storage Temperature Range	$T_{\rm stg}$	-40 to +85	°C
Operating Temperature Range	T _A	-10 to +60	°C

7-2. Electronic Characteristics

	Characteristic	Sym	Minimum	Typical	Maximum	Unit
Center Frequency	Absolute Frequency	f _C	904.150		Maximum 904.450 4.0 55 55 58.5 58.5	MHz
(+25℃)	Tolerance from 904.300 MHz	Δf_{C}		±150		kHz
Insertion Loss		ΙL		3.4	4.0	dB
Quality Faster	Unloaded Q	Qu		6,200		
Quality Factor 50 Ω Loaded Q		QL		2,000		
	Turnover Temperature	T ₀	25		904.450 4.0 555 58.5	°C
Temperature Stability	Turnover Frequency	f ₀		f _C		kHz
	Frequency Temperature Coefficient	FTC		0.032	904.450 4.0 55 58.5	ppm/℃²
Frequency Aging	Absolute Value during the First Year	fA		≤10		ppm/yr
DC Insulation Resis	tance Between Any Two Terminals		1.0			MΩ
	Motional Resistance	R _M		48	58.5	Ω
RF Equivalent	Motional Inductance	L _M		52.1218	904.450 4.0 555 55 58.5 3	μH
RLC Model	Motional Capacitance	См		0.5949		fF
	Shunt Static Capacitance	C ₀	1.0	1.3		pF

(i) CAUTION: Electrostatic Sensitive Device. Observe precautions for handling!

1. The center frequency, f_C , is measured at the minimum IL point with the resonator in the 50 Ω test system.

- Electronics Limited
- 2. Unless noted otherwise, case temperature $T_C = +25^{\circ}C\pm 2^{\circ}C$.
- Frequency aging is the change in f_c with time and is specified at +65°C or less. Aging may exceed the 3. specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- Turnover temperature, T₀, is the temperature of maximum (or turnover) frequency, f₀. The nominal frequency at 4. any case temperature, T_c, may be calculated from: $f = f_0 [1 - FTC (T_0 - T_c)^2]$.
- 5. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C_0 is the measured static (nonmotional) capacitance between the two terminals. The measurement includes case parasitic capacitance.
- Derived mathematically from one or more of the following directly measured parameters: f_C, IL, 3 dB bandwidth, 6. $f_{\rm C}$ versus $T_{\rm C}$, and $C_{\rm 0}$. The specifications of this device are based on the test circuit shown above and subject to change or
- 7. obsolescence without notice.
- Typically, equipment utilizing this device requires emissions testing and government approval, which is the 8. responsibility of the equipment manufacturer.
- Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, 9. processes and circuits implemented within components or assemblies.
- 10. For questions on technology, prices and delivery, please contact our sales offices or e-mail info@v-torch.com.