

SAW RESONATOR

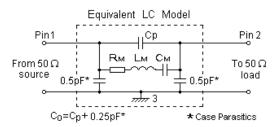
Part Number: VTR930M

The **VTR930M** is a true one-port, surface-acoustic-wave (**SAW**) resonator in a low-profile metal **TO-39** case. It provides reliable, fundamental-mode, quartz frequency stabilization i.e. in transmitters or local oscillators operating at **930.500** MHz.

1. Package Dimension (TO-39)

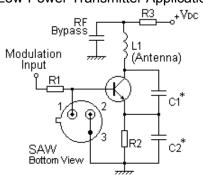
Pin	Configuration			
1	Input / Output			
2	Output / Input			
3	Case Ground			

Dimension	Data (unit: mm)			
Α	9.15±0.20			
В	5.08±0.20			
С	3.30±0.20			
D	3±0.20/5±0.20			
E	0.45±0.10			

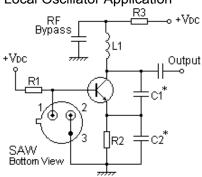

2. Marking

VTR 930M

Ink Marking


Color: Black or Blue

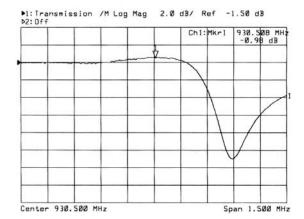
3. Equivalent LC Model and Test Circuit

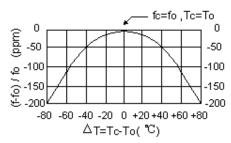


4. Typical Application Circuits

1) Low-Power Transmitter Application

2) Local Oscillator Application


5. Typical Frequency Response


6. Temperature Characteristics

www.v-torch.com Tel: 86-755-8363 5090 Fax: 86-755-8950 7007 Page 1 of 3

V.TORCH

Electronics Limited

The curve shown above accounts for resonator contribution only and does not include oscillator temperature characteristics.

7. Performance

7-1. Maximum Ratings

Rating	Value	Unit	
CW RF Power Dissipation	Р	0	dBm
DC Voltage Between Any two Pins	$V_{\rm DC}$	±30	V
Storage Temperature Range	$T_{ m stg}$	-40 to +85	$^{\circ}$
Operating Temperature Range	T _A	-10 to +60	$^{\circ}$

7-2. Electronic Characteristics

	Characteristic	Sym	Minimum	Typical	Maximum	Unit
Center Frequency (+25°C)	Absolute Frequency	f _C	930.350		930.650	MHz
	Tolerance from 930.500 MHz	Δf_{C}		±150		kHz
Insertion Loss		IL		1.3	1.8	dB
Quality Factor	Unloaded Q	Q _U		11,600		
	50 Ω Loaded Q	QL		1,600		
Temperature Stability	Turnover Temperature	T ₀	25		55	°C
	Turnover Frequency	f ₀		f _C		kHz
	Frequency Temperature Coefficient	FTC		0.032		ppm/°C²
Frequency Aging Absolute Value during the First Year		f _A		≤10		ppm/yr
DC Insulation Resistance Between Any Two Pins			1.0			МΩ
RF Equivalent RLC Model	Motional Resistance	R_{M}		16	23	Ω
	Motional Inductance	L _M		31.7616		μН
	Motional Capacitance	C_{M}		0.9220		fF
	Pin 1 to Pin 2 Static Capacitance	C ₀	2.35	2.65	2.95	pF

(i) CAUTION: Electrostatic Sensitive Device. Observe precautions for handling!

- 1. The center frequency, f_C , is measured at the minimum IL point with the resonator in the 50Ω test system.
- 2. Unless noted otherwise, case temperature $T_C = +25^{\circ}C \pm 2^{\circ}C$.
- 3. Frequency aging is the change in f_C with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture,

www.v-torch.com Tel: 86-755-8363 5090 Fax: 86-755-8950 7007 Page 2 of 3

- decreasing in subsequent years.
- 4. Turnover temperature, T_0 , is the temperature of maximum (or turnover) frequency, f_0 . The nominal frequency at any case temperature, T_C , may be calculated from: $f = f_0 [1 FTC (T_0 T_C)^2]$.
- 5. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C₀ is the measured static (nonmotional) capacitance between Pin1 and Pin2. The measurement includes case parasitic capacitance.
- 6. Derived mathematically from one or more of the following directly measured parameters: f_C , IL, 3 dB bandwidth, f_C versus T_C , and C_0 .
- The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- 8. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- 10. For questions on technology, prices and delivery, please contact our sales offices or e-mail info@v-torch.com.

www.v-torch.com Tel: 86-755-8363 5090 Fax: 86-755-8950 7007 Page 3 of 3