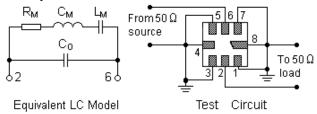


SAW RESONATOR Part Number: VTR42655

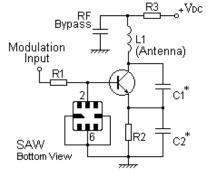
The **VTR42655** is a true one-port, surface-acoustic-wave (**SAW**) resonator in a surface-mount ceramic **QCC8C** case. It provides reliable, fundamental-mode, quartz frequency stabilization i.e. in transmitters or local oscillators operating at **426.550** MHz.

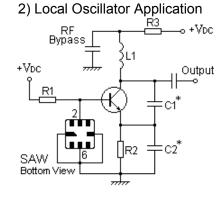
1. Package Dimension (QCC8C)


Pin	Configuration
2	Terminal1
6	Terminal2
4, 8	Case Ground
1, 3, 5, 7	Empty

Sign	Data (unit: mm)	Sign	Data (unit: mm)
А	2.08	E	1.2
В	0.6	F	1.35
С	1.27	G	5.0
D	2.54	Н	5.0

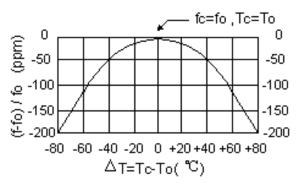
2. Marking


VTR 42655 Laser Marking


3. Equivalent LC Model and Test Circuit

4. Typical Application Circuits

1) Low-Power Transmitter Application


5. Typical Frequency Response

6. Temperature Characteristics

Electronics Limited

		Me	as1:M	kri 4	26.55 -1.13	
	5	7				
			\backslash			
				/	r	
				V		

The curve shown above accounts for resonator contribution only and does not include oscillator temperature characteristics.

7. Performance

7-1. Maximum Ratings

Rating		Value	Unit
CW RF Power Dissipation	Р	0	dBm
DC Voltage Between Terminals	V _{DC}	±30	V
Storage Temperature Range	$T_{\rm stg}$	-40 to +85	°C
Operating Temperature Range	T _A	-10 to +60	°C

7-2. Electronic Characteristics

	Characteristic	Sym	Minimum	Typical	Maximum	Unit
Center Frequency	Absolute Frequency	f _C	426.475		426.625	MHz
(+25℃)	Tolerance from 426.550 MHz	Δf_{C}		±75		kHz
Insertion Loss		IL		1.5	2.0	dB
Quality Factor Temperature Stability	Unloaded Q	QU		8,140		
	50 Ω Loaded Q	QL		1,300		
	Turnover Temperature	T ₀	25		55	°C
	Turnover Frequency	f ₀		f _C		kHz
	Frequency Temperature Coefficient	ILC ILC ILC ILC IL 1.5 2.0 Qu 8,140 QL 1,300 erature T_0 25 ency f_0 f_c perature Coefficient FTC 0.032 uring the First Year $ fA $ ≤10 ny Two Terminals 1.0 19 ance L _M 57.7512	ppm/℃²			
Frequency Aging	Absolute Value during the First Year	fA		≤10		ppm/yr
DC Insulation Resist	tance Between Any Two Terminals		1.0			MΩ
RF Equivalent RLC Model	Motional Resistance	R _M		19	26	Ω
	Motional Inductance	L _M		57.7512		μH
	Motional Capacitance	См		2.4131		fF
	Shunt Static Capacitance	C ₀	2.25	2.55	2.85	pF

$\textcircled{\begin{tabular}{ll} \begin{tabular}{ll} \hline \begin{tabular}{ll}$

- 1. The center frequency, f_c , is measured at the minimum IL point with the resonator in the 50 Ω test system.
- 2. Unless noted otherwise, case temperature $T_c = +25^{\circ}C \pm 2^{\circ}C$.
- Frequency aging is the change in f_C with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 4. Turnover temperature, T_0 , is the temperature of maximum (or turnover) frequency, f_0 . The nominal frequency at any case temperature, T_c , may be calculated from: $f = f_0 [1 FTC (T_0 T_c)^2]$.
- 5. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C₀ is the measured static (nonmotional) capacitance between the two terminals. The measurement includes case parasitic capacitance.
- 6. Derived mathematically from one or more of the following directly measured parameters: f_C, IL, 3 dB bandwidth, f_C versus T_C, and C₀.
- 7. The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- 8. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 9. Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- 10. For questions on technology, prices and delivery, please contact our sales offices or e-mail info@v-torch.com