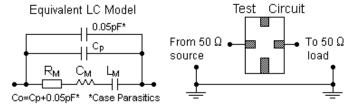


SAW RESONATOR Part Number: VTR40354

The **VTR40354** is a true one-port, surface-acoustic-wave (**SAW**) resonator in a surface-mount ceramic **QCC4A** case. It provides reliable, fundamental-mode, quartz frequency stabilization i.e. in transmitters or local oscillators operating at **403.550** MHz.

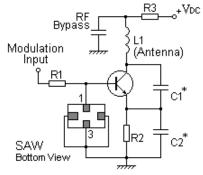
1. Package Dimension (QCC4A)

Pin	Configuration
1	Input / Output
3	Output / Input
2/4	Case Ground

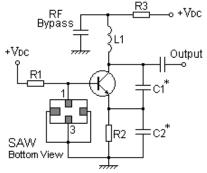

Sign	Data (unit: mm)	Sign	Data (unit: mm)
А	1.2	D	1.4
В	0.8	Е	5.0
С	0.5	F	3.5

2. Marking

VTR 40354


Laser Marking

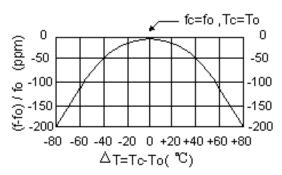
3. Equivalent LC Model and Test Circuit



4. Typical Application Circuits

1) Low-Power Transmitter Application

2) Local Oscillator Application



5. Typical Frequency Response

6. Temperature Characteristics

				Me	asl:M	krl i	403.550 MH: -1.112dB	
			4	,				
		 -		1				
F		 +						
					$ \rangle$			
						1		
	-					f		
\vdash		 -				/		
┝	_	 -				í		

The curve shown above accounts for resonator contribution only and does not include oscillator temperature characteristics.

7. Performance

7-1. Maximum Ratings

Rating		Value	Unit
CW RF Power Dissipation	Р	0	dBm
DC Voltage Between Terminals	V _{DC}	±30	V
Storage Temperature Range	$T_{\rm stg}$	-40 to +85	°C
Operating Temperature Range	T _A	-10 to +60	°C

7-2. Electronic Characteristics

	Characteristic	Sym	Minimum	Typical	Maximum	Unit
Center Frequency	Absolute Frequency	fc	403.475		403.625	MHz
(+25℃)	Tolerance from 403.550 MHz	Δf_{C}		±75		kHz
Insertion Loss		١L		1.3	1.8	dB
Quality Faster	Unloaded Q	QU		12,325		
Quality Factor	50 Ω Loaded Q	Length F _C 403.475 403.625 uency f _C 403.475 403.625 n 403.550 MHz Δf _C ±75 1.3 IL 1.3 1.8 Qu 12,325 1.3 Q QL 1,700 1.700 perature T ₀ 25 55 uency f ₀ f _C 1.3 mperature Coefficient FTC 0.032 1.0 during the First Year fA ≤10 1.0 Any Two Terminals 1.0 1.6 23 ctance L _M 77.8126 1.0				
	Turnover Temperature	T ₀	25		55	°C
Temperature Stability	Turnover Frequency	f ₀		f _C		kHz
	Frequency Temperature Coefficient	FTC		0.032	403.625	ppm/℃²
Frequency Aging	Absolute Value during the First Year	fA		≤10		ppm/yr
DC Insulation Resis	tance Between Any Two Terminals		1.0			MΩ
	Motional Resistance	R _M		16	23	Ω
RF Equivalent	Motional Inductance	L _M		77.8126		μH
RLC Model	Motional Capacitance	См		2.00095		fF
	Shunt Static Capacitance	C ₀	1.9	2.2	2.5	pF

(i) CAUTION: Electrostatic Sensitive Device. Observe precautions for handling!

1. The center frequency, f_c , is measured at the minimum IL point with the resonator in the 50 Ω test system.

- Electronics Limited
- 2. Unless noted otherwise, case temperature $T_C = +25^{\circ}C\pm 2^{\circ}C$.
- Frequency aging is the change in f_c with time and is specified at +65°C or less. Aging may exceed the 3. specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- Turnover temperature, T₀, is the temperature of maximum (or turnover) frequency, f₀. The nominal frequency at 4. any case temperature, T_c, may be calculated from: $f = f_0 [1 - FTC (T_0 - T_c)^2]$.
- 5. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C_0 is the measured static (nonmotional) capacitance between the two terminals. The measurement includes case parasitic capacitance.
- Derived mathematically from one or more of the following directly measured parameters: f_C, IL, 3 dB bandwidth, 6. $f_{\rm C}$ versus $T_{\rm C}$, and $C_{\rm 0}$. The specifications of this device are based on the test circuit shown above and subject to change or
- 7. obsolescence without notice.
- Typically, equipment utilizing this device requires emissions testing and government approval, which is the 8. responsibility of the equipment manufacturer.
- Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, 9. processes and circuits implemented within components or assemblies.
- 10. For questions on technology, prices and delivery, please contact our sales offices or e-mail info@v-torch.com.