

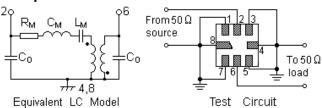
SAW RESONATOR

Part Number: VTR4335B

The **VTR4335B** is a two-port, 180° surface-acoustic-wave (**SAW**) resonator in a surface-mount ceramic **QCC8C** case. It provides reliable, fundamental-mode, quartz frequency stabilization i.e. in transmitters or local oscillators operating at **433.920** MHz.

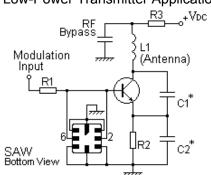
1. Package Dimension (QCC8C)

Pin	Configuration			
2	Terminal1			
6	Terminal2			
4,8	Case Ground			
1,3,5,7	Empty			

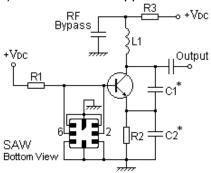

Sign	Data (unit: mm)	Sign	Data (unit: mm)
Α	2.08	E	1.2
В	0.6	F	1.35
С	1.27	G	5.0
D	2.54	Н	5.0

2. Marking

VTR4335B


Laser Marking

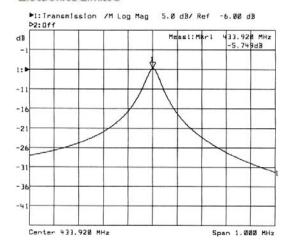
3. Equivalent LC Model and Test Circuit

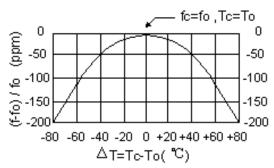


4. Typical Application Circuits

1) Low-Power Transmitter Application

2) Local Oscillator Application




5. Typical Frequency Response

6. Temperature Characteristics

www.v-torch.com Tel: 86-755-8363 5090 Fax: 86-755-8950 7007 Page 1 of 4

The curve shown above accounts for resonator contribution only and does not include LC component temperature characteristics.

7. Performance

7-1. Maximum Ratings

Rating	Value	Unit	
CW RF Power Dissipation	Р	0	dBm
DC Voltage Between Terminals	V_{DC}	12	V
Storage Temperature Range	$T_{ m stg}$	-40 to +125	$^{\circ}$
Operating Temperature Range	T_{A}	-40 to +125	$^{\circ}$ C

7-2. Electronic Characteristics

	Characteristic	Sym	Minimum	Typical	Maximum	Unit
Center Frequency (+25°C)	Absolute Frequency	f _C	433.845		433.995	MHz
	Tolerance from 433.920 MHz	Δf_{C}		±75		kHz
Insertion Loss		IL		6.0	8.0	dB
Quality Factor	Unloaded Q	Q _U		15,040		
	50 Ω Loaded Q	Q_L		7,500		
Temperature Stability	Turnover Temperature	To	45		65	℃
	Turnover Frequency	f _O		fc		kHz
	Frequency Temperature Coefficient	FTC		0.032		ppm/°C²
Frequency Aging Absolute Value during the First Year		f _A		≤10		ppm/yr
DC Insulation Resistance Between Any Two Terminals			1.0			ΜΩ
RF Equivalent RLC Model	Motional Resistance	R _M		99.5	151	Ω
	Motional Inductance	L _M		549.079		μН
	Motional Capacitance	См		0.24526		fF
	Shunt Static Capacitance	Co	1.10	1.30	1.60	pF

(i) CAUTION: Electrostatic Sensitive Device. Observe precautions for handling!

www.v-torch.com Tel: 86-755-8363 5090 Fax: 86-755-8950 7007 Page 2 of 4

- The frequency f_C is the frequency of minimum IL with the resonator in the specified test fixture in a 50Ω test system with VSWR≤1.2:1.
- 2. Unless noted otherwise, case temperature T_C = +25°C±2°C.
- 3. Frequency aging is the change in f_C with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 4. Turnover temperature, T_0 , is the temperature of maximum (or turnover) frequency, f_0 . The nominal frequency at any case temperature, T_C , may be calculated from: $f = f_0 \left[1 FTC \left(T_0 T_C \right)^2 \right]$.
- 5. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C₀ is the measured static (nonmotional) capacitance between input terminal and ground or output terminal and ground. The measurement includes case parasitic capacitance.
- Derived mathematically from one or more of the following directly measured parameters: f_C, IL, 3 dB bandwidth, f_C versus T_C, and C₀.
- 7. The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- 8. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 9. Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- 10. For questions on technology, prices and delivery, please contact our sales offices or e-mail info@v-torch.com

www.v-torch.com Tel: 86-755-8363 5090 Fax: 86-755-8950 7007 Page 3 of 4