

SAW RESONATOR Part Number: VTR31454

The **VTR31454** is a true one-port, surface-acoustic-wave (**SAW**) resonator in a surface-mount ceramic **QCC4A** case. It provides reliable, fundamental-mode, quartz frequency stabilization i.e. in transmitters or local oscillators operating at **314.500** MHz.

1. Package Dimension (QCC4A)

Pin	Configuration			
1	Input / Output			
3	Output / Input			
2/4	Case Ground			

Sign	Data (unit: mm)	Sign	Data (unit: mm)
А	1.2	D	1.4
В	0.8	Е	5.0
С	0.5	F	3.5

3. Equivalent LC Model and Test Circuit

From 50 Ω .

source

Test Circuit

To 50 Ω

load

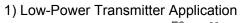
Equivalent LC Model

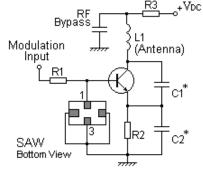
См

Co=Cp+0.05pF* *Case Parasitics

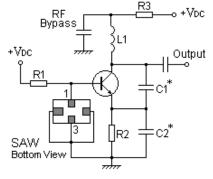
Rм

0.05pF*

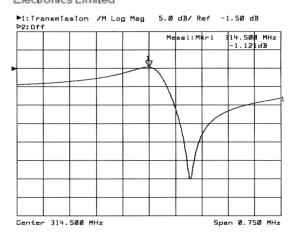

Ср

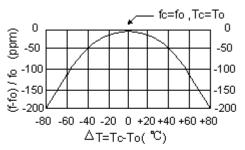

2. Marking

VTR 31454


Laser Marking

4. Typical Application Circuits


2) Local Oscillator Application



5. Typical Frequency Response

6. Temperature Characteristics

The curve shown above accounts for resonator contribution only and does not include oscillator temperature characteristics.

7. Performance

7-1. Maximum Ratings

Rating		Value	Unit	
CW RF Power Dissipation	Р	0	dBm	
DC Voltage Between Terminals	V _{DC}	±30	V	
Storage Temperature Range	$T_{\rm stg}$	-40 to +85	°C	
Operating Temperature Range	T _A	-10 to +60	°C	

7-2. Electronic Characteristics

	Characteristic	Sym	Minimum	Typical	Maximum	Unit
Center Frequency (+25℃)	Absolute Frequency	f _C	314.425		314.575	MHz
	Tolerance from 314.500MHz	Δf_{C}		±75		kHz
Insertion Loss		IL		1.3	1.8	dB
Quality Factor	Unloaded Q	Qu		14,500		
	50 Ω Loaded Q	QL		2,000		
	Turnover Temperature	T ₀	25		55	°C
Temperature Stability	Turnover Frequency	f ₀		f _C		kHz
	Frequency Temperature Coefficient	FTC		0.032		ppm/℃ ²
Frequency Aging Absolute Value during the First Year		f _A		≤10		ppm/yr
DC Insulation Resis	tance Between Any Two Terminals		1.0			MΩ
RF Equivalent RLC Model	Motional Resistance	R _M		16	23	Ω
	Motional Inductance	L _M		117.4648		μH
	Motional Capacitance	См		2.1824		fF
	Shunt Static Capacitance	C ₀	2.30	2.50	2.80	pF

(i) CAUTION: Electrostatic Sensitive Device. Observe precautions for handling!

1. The center frequency, f_c , is measured at the minimum IL point with the resonator in the 50 Ω test system.

- Electronics Limited
- 2. Unless noted otherwise, case temperature $T_C = +25^{\circ}C\pm 2^{\circ}C$.
- Frequency aging is the change in f_C with time and is specified at +65°C or less. Aging may exceed the 3. specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- Turnover temperature, T₀, is the temperature of maximum (or turnover) frequency, f₀. The nominal frequency at 4. any case temperature, T_c , may be calculated from: $f = f_0 [1 - FTC (T_0 - T_c)^2]$.
- 5. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C₀ is the measured static (nonmotional) capacitance between the two terminals. The measurement includes case parasitic capacitance.
- Derived mathematically from one or more of the following directly measured parameters: f_C, IL, 3 dB bandwidth, 6. f_c versus T_c , and C_0 . The specifications of this device are based on the test circuit shown above and subject to change or
- 7. obsolescence without notice.
- Typically, equipment utilizing this device requires emissions testing and government approval, which is the 8. responsibility of the equipment manufacturer.
- Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, 9. processes and circuits implemented within components or assemblies.
- 10. For questions on technology, prices and delivery, please contact our sales offices or e-mail info@v-torch.com