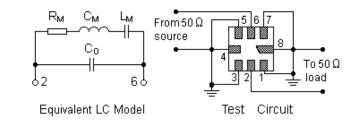


SAW RESONATOR Part Number: VTR90255

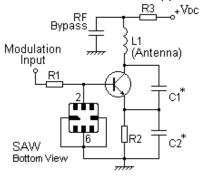
The **VTR90255** is a true one-port, surface-acoustic-wave (**SAW**) resonator in a surface-mount ceramic **QCC8C** case. It provides reliable, fundamental-mode, quartz frequency stabilization i.e. in transmitters or local oscillators operating at **902.500** MHz.

1. Package Dimension (QCC8C)

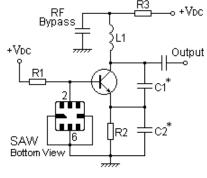

Pin	Configuration			
2	Terminal1			
6	Terminal2			
4, 8	Case Ground			
1, 3, 5, 7	Empty			

Sign	Data (unit: mm)	Sign	Sign Data (unit: mm)	
А	2.08	Ш	1.2	
В	0.6	F	1.35	
С	1.27	G	5.0	
D	2.54	Н	5.0	

2. Marking


VTR 90255 Laser Marking

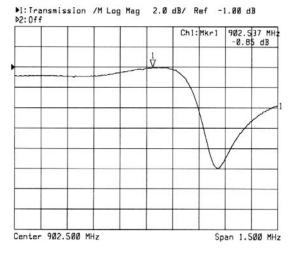
3. Equivalent LC Model and Test Circuit

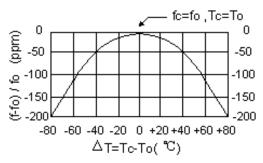


4. Typical Application Circuits

1) Low-Power Transmitter Application

2) Local Oscillator Application




5. Typical Frequency Response

6. Temperature Characteristics

Lioco chies chines

The curve shown above accounts for resonator contribution only and does not include oscillator temperature characteristics.

7. Performance

7-1. Maximum Ratings

Rating		Value	Unit	
CW RF Power Dissipation	Р	0	dBm	
DC Voltage Between Terminals	V _{DC}	±30	V	
Storage Temperature Range	T _{stg}	-40 to +85	°C	
Operating Temperature Range	T _A	-10 to +60	°C	

7-2. Electronic Characteristics

	Characteristic	Sym	Minimum	Typical	Maximum	Unit
Center Frequency (+25℃)	Absolute Frequency	fc	902.350		902.650	MHz
	Tolerance from 902.500 MHz	Δf_{C}		±150		kHz
Insertion Loss	·	١L		1.3	2.0	dB
Quality Factor	Unloaded Q	Qu		12,000		
	50 Ω Loaded Q	QL		1,650		
Temperature Stability	Turnover Temperature	T ₀	25		55	°C
	Turnover Frequency	f ₀		fc		kHz
	Frequency Temperature Coefficient	FTC		0.032		ppm/℃ ²
Frequency Aging	Absolute Value during the First Year	fA		≤10		ppm/yr
DC Insulation Resis	tance Between Any Two Terminals		1.0			MΩ
RF Equivalent RLC Model	Motional Resistance	R _M		16	26	Ω
	Motional Inductance	L _M		33.7703		μH
	Motional Capacitance	См		0.92183		fF
	Shunt Static Capacitance	C ₀	2.30	2.60	2.90	pF

(i)CAUTION: Electrostatic Sensitive Device. Observe precautions for handling!

- 1. The center frequency, f_c , is measured at the minimum IL point with the resonator in the 50 Ω test system.
- 2. Unless noted otherwise, case temperature $T_c = +25^{\circ}C \pm 2^{\circ}C$.
- Frequency aging is the change in f_C with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 4. Turnover temperature, T_0 , is the temperature of maximum (or turnover) frequency, f_0 . The nominal frequency at any case temperature, T_c , may be calculated from: $f = f_0 [1 FTC (T_0 T_c)^2]$.
- 5. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C₀ is the measured static (nonmotional) capacitance between the two terminals. The measurement includes case parasitic capacitance.
- 6. Derived mathematically from one or more of the following directly measured parameters: f_C, IL, 3 dB bandwidth, f_C versus T_C, and C₀.
- 7. The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- 8. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 9. Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- 10. For questions on technology, prices and delivery, please contact our sales offices or e-mail info@v-torch.com