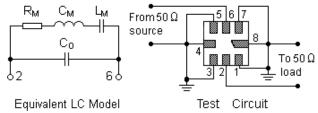


SAW RESONATOR Part Number: VTR32405

The **VTR32405** is a true one-port, surface-acoustic-wave (**SAW**) resonator in a surface-mount ceramic **QCC8C** case. It provides reliable, fundamental-mode, quartz frequency stabilization i.e. in transmitters or local oscillators operating at **324.000** MHz.

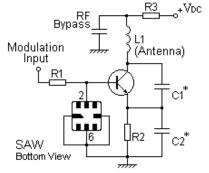
1. Package Dimension (QCC8C)

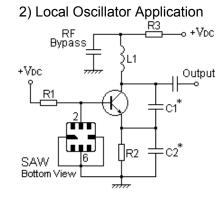
Pin	Configuration
2	Terminal1
6	Terminal2
4, 8	Case Ground
1, 3, 5, 7	Empty


Sign	Data (unit: mm)	Sign	Data (unit: mm)
А	2.08	Е	1.2
В	0.6	F	1.35
С	1.27	G	5.0
D	2.54	Н	5.0

2. Marking

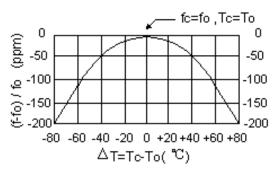
VTR 32405


Laser Marking


3. Equivalent LC Model and Test Circuit

4. Typical Application Circuits

1) Low-Power Transmitter Application


5. Typical Frequency Response

6. Temperature Characteristics

Electronics Limited

			Me	as1:M	kri i	24.00 -1.06	
		ł	k				
 	 		\backslash				
							$ \land $
				\backslash	/		
				1	/		
				\square			
				V			
 	 <u> </u>						

The curve shown above accounts for resonator contribution only and does not include oscillator temperature characteristics.

7. Performance

7-1. Maximum Ratings

Rating		Value	Unit
CW RF Power Dissipation	Р	0	dBm
DC Voltage Between Terminals	V _{DC}	±30	V
Storage Temperature Range	$T_{\rm stg}$	-40 to +85	°C
Operating Temperature Range	T _A	-10 to +60	°C

7-2. Electronic Characteristics

	Characteristic	Sym	Minimum	Typical	Maximum	Unit
Center Frequency	Absolute Frequency	fc	323.925		324.075	MHz
(+25℃)	Tolerance from 324.000 MHz	Δf_{C}		±75	324.075 1.8 55 23	kHz
Insertion Loss		IL		1.3	1.8	dB
Quality Factor	Unloaded Q	QU		11,240		
	50 Ω Loaded Q	QL		1.3 324.075 ± 75 1.3 1.3 1.8 $11,240$ 1,550 5 55 fc 0.032 ≤ 10 0 16 23 88.3660 2.7334		
	Turnover Temperature	T ₀	25		55	°C
Temperature Stability	Turnover Frequency	f ₀		fc		kHz
	Frequency Temperature Coefficient	FTC		0.032	1.8 55 23	ppm/℃²
Frequency Aging	Absolute Value during the First Year	fA		≤10		ppm/yr
DC Insulation Resis	tance Between Any Two Terminals		1.0			MΩ
RF Equivalent RLC Model	Motional Resistance	R _M		16	23	Ω
	Motional Inductance	L _M		88.3660		μH
	Motional Capacitance	См		2.7334		fF
	Shunt Static Capacitance	C ₀	2.8	3.0	3.2	pF

(i)CAUTION: Electrostatic Sensitive Device. Observe precautions for handling!

- Electronics Limited
- 1. The center frequency, f_{C} , is measured at the minimum IL point with the resonator in the 50 Ω test system.
- 2. Unless noted otherwise, case temperature $T_C = +25^{\circ}C \pm 2^{\circ}C$.
- Frequency aging is the change in f_C with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- Turnover temperature, T₀, is the temperature of maximum (or turnover) frequency, f₀. The nominal frequency at any case temperature, T_c, may be calculated from: f = f₀ [1 FTC (T₀ T_c)²].
- 5. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C₀ is the measured static (nonmotional) capacitance between the two terminals. The measurement includes case parasitic capacitance.
- 6. Derived mathematically from one or more of the following directly measured parameters: f_c, IL, 3 dB bandwidth, f_c versus T_c, and C₀.
- 7. The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- 8. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 9. Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- 10. For questions on technology, prices and delivery, please contact our sales offices or e-mail info@v-torch.com.