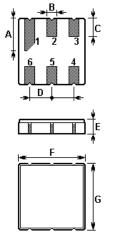


SAW RESONATOR

Part Number: VTR31502

The **VTR31502** is a true one-port, surface-acoustic-wave (**SAW**) resonator in a surface-mount ceramic **DCC6** case. It provides reliable, fundamental-mode, quartz frequency stabilization i.e. in transmitters or local oscillators operating at **315.000** MHz.


Rм

2

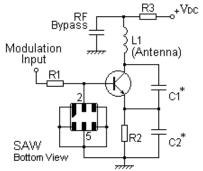
См

Co

1. Package Dimension (DCC6)

Pin	Configuration
2	Input / Output
5	Output / Input
1, 3, 4, 6	Ground

Sign	Data (unit: mm)	Sign	Data (unit: mm)
А	1.9	Е	1.2
В	0.64	F	3.8
С	1.0	G	3.8
D	1.27		


2. Marking

VTR 31502

Laser Marking

4. Typical Application Circuits

1) Low-Power Transmitter Application

Equivalent LC Model Test Circuit

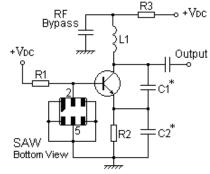
57

3. Equivalent LC Model and Test Circuit

From 50 Ω

source

2 3

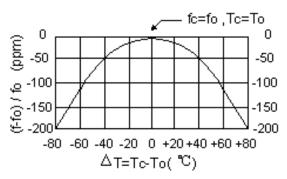

6 5 4

To 50Ω Ioad

11

Lм

2) Local Oscillator Application



5. Typical Frequency Response

6. Temperature Characteristics

			Me	as1:M	(rl i	15.00 -1.28	
		1	Ζ.				
 	 		\backslash				
							Ν
				\setminus	/	1	$\left \right\rangle$
				$\left \right $	/		V
				\square			
				V			
 1							

The curve shown above accounts for resonator contribution only and does not include oscillator temperature characteristics.

7. Performance

7-1. Maximum Ratings

Rating	Value	Unit	
CW RF Power Dissipation	Р	0	dBm
DC Voltage Between Terminals	V _{DC}	±30	V
Storage Temperature Range	T _{stg}	-40 to +85	°C
Operating Temperature Range	T _A	-10 to +60	°C

7-2. Electronic Characteristics

	Characteristic	Sym	Minimum	Typical	Maximum	Unit
Center Frequency	Absolute Frequency	f _C	314.925		315.075	MHz
(+25℃)	Tolerance from 315.000 MHz	Δf_{C}		±75		kHz
Insertion Loss		١L		1.3	1.8	dB
Quality Easter	Unloaded Q	QU		15,225	315.075 1.8 30 23	
Quality Factor	50 Ω Loaded Q	QL		2,100		
	Turnover Temperature	T ₀	5		30	°C
Temperature Stability	Turnover Frequency	f ₀		f _C		kHz
	Frequency Temperature Coefficient	FTC		0.032	315.075 1.8 30 23	ppm/℃²
Frequency Aging	Frequency Aging Absolute Value during the First Year			≤10		ppm/yr
DC Insulation Resistance Between Any Two Terminals			1.0			MΩ
	Motional Resistance	R _M		16	23	Ω
RF Equivalent	Motional Inductance	L _M		123.14225		μH
RLC Model	Motional Capacitance	C _M		2.0752	0 30 30 2 2 2 23 225 52	fF
	Shunt Static Capacitance	C ₀	2.20	2.45		pF

$\textcircled{\begin{tabular}{ll} \begin{tabular}{ll} \hline \begin{tabular}{ll}$

- 1. The center frequency, f_c , is measured at the minimum IL point with the resonator in the 50 Ω test system.
- 2. Unless noted otherwise, case temperature $T_c = +25^{\circ}C\pm 2^{\circ}C$.
- Frequency aging is the change in f_c with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- Turnover temperature, T₀, is the temperature of maximum (or turnover) frequency, f₀. The nominal frequency at any case temperature, T_c, may be calculated from: f = f₀ [1 FTC (T₀ T_c)²].
 This equivalent RLC model approximates resonator performance near the resonant frequency and is provided
- 5. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C₀ is the measured static (nonmotional) capacitance between the two terminals. The measurement includes case parasitic capacitance.
- 6. Derived mathematically from one or more of the following directly measured parameters: f_c, IL, 3 dB bandwidth, f_c versus T_c, and C₀.
- 7. The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- 8. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 9. Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- 10. For questions on technology, prices and delivery, please contact our sales offices or e-mail: info@v-torch.com