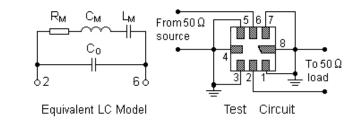


SAW RESONATOR Part Number: VTR64375

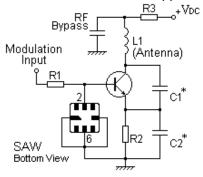
The **VTR64375** is a true one-port, surface-acoustic-wave (**SAW**) resonator in a surface-mount ceramic **QCC8C** case. It provides reliable, fundamental-mode, quartz frequency stabilization i.e. in transmitters or local oscillators operating at **643.750** MHz.

1. Package Dimension (QCC8C)

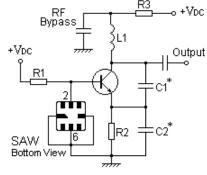

Pin	Configuration
2	Terminal1
6	Terminal2
4,8	Case Ground
1,3,5,7	Empty

Sign	Data (unit: mm)	Sign	Data (unit: mm)
А	2.08	Е	1.2
В	0.6	F	1.35
С	1.27	G	5.0
D	2.54	Н	5.0

2. Marking


VTR 64375 Laser Marking

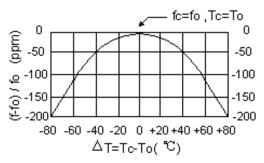
3. Equivalent LC Model and Test Circuit



4. Typical Application Circuits

1) Low-Power Transmitter Application

2) Local Oscillator Application


5. Typical Frequency Response

6. Temperature Characteristics

Electronics Limited

			Me	as1:M	(r1 é	43.75 -1.38	
		1	7				
				\backslash			
					\setminus		
					∇		

The curve shown above accounts for resonator contribution only and does not include oscillator temperature characteristics.

7. Performance

7-1. Maximum Ratings

Rating		Value	Unit
CW RF Power Dissipation	Р	0	dBm
DC Voltage Between Terminals	V _{DC}	±30	V
Storage Temperature Range	$T_{\rm stg}$	-40 to +85	°C
Operating Temperature Range	T _A	-10 to +60	°C

7-2. Electronic Characteristics

	Characteristic	Sym	Minimum	Typical	Maximum	Unit
Center Frequency	Absolute Frequency	fc	643.675		643.825	MHz
(+25℃)	Tolerance from 643.750 MHz	Δf_{C}		±75		kHz
Insertion Loss		IL		1.5	2.0	dB
Quality Faster	Unloaded Q	QU		9,400	643.825	
Quality Factor	50 Ω Loaded Q	QL		1,500		
	Turnover Temperature	T ₀	25		55	°C
Temperature Stability	Turnover Frequency	f ₀		f _C		kHz
	Frequency Temperature Coefficient	FTC		0.032	643.825 2.0 55 26	ppm/℃ ²
Frequency Aging	Absolute Value during the First Year	fA		≤10		ppm/yr
DC Insulation Resis	tance Between Any Two Terminals		1.0			MΩ
	Motional Resistance	R _M		19	26	Ω
RF Equivalent	Motional Inductance	L _M		44.1531		μH
RLC Model	Motional Capacitance	См		1.3858		fF
	Shunt Static Capacitance	C ₀	1.65	1.95	2.0	pF

(i)CAUTION: Electrostatic Sensitive Device. Observe precautions for handling!

- Electronics Limited
- 1. The center frequency, f_{C} , is measured at the minimum IL point with the resonator in the 50 Ω test system.
- 2. Unless noted otherwise, case temperature $T_C = +25^{\circ}C \pm 2^{\circ}C$.
- Frequency aging is the change in f_C with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- Turnover temperature, T₀, is the temperature of maximum (or turnover) frequency, f₀. The nominal frequency at any case temperature, T_c, may be calculated from: f = f₀ [1 FTC (T₀ T_c)²].
- 5. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C₀ is the measured static (nonmotional) capacitance between the two terminals. The measurement includes case parasitic capacitance.
- 6. Derived mathematically from one or more of the following directly measured parameters: f_c, IL, 3 dB bandwidth, f_c versus T_c, and C₀.
- 7. The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- 8. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 9. Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- 10. For questions on technology, prices and delivery, please contact our sales offices or e-mail info@v-torch.com.