

SAW RESONATOR Part Number: VTR34504

The **VTR34504** is a true one-port, surface-acoustic-wave (**SAW**) resonator in a surface-mount ceramic **QCC4A** case. It provides reliable, fundamental-mode, quartz frequency stabilization i.e. in transmitters or local oscillators operating at **345.000** MHz.

1. Package Dimension (QCC4A)

Pin	Configuration
1	Input / Output
3	Output / Input
2/4	Case Ground

Sign	Data (unit: mm)	Sign	Data (unit: mm)
А	1.2	D	1.4
В	0.8	Е	5.0
С	0.5	F	3.5

3. Equivalent LC Model and Test Circuit

From 50 Ω .

source

Test Circuit

To 50 Ω

load

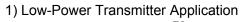
Equivalent LC Model

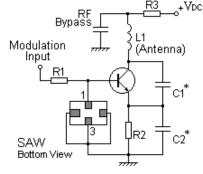
См

Co=Cp+0.05pF* *Case Parasitics

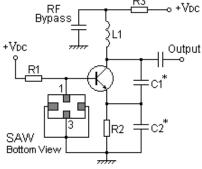
Rм

0.05pF*


Ср


2. Marking

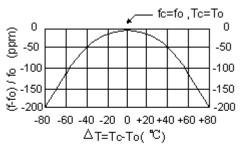
VTR 34504


Laser Marking

4. Typical Application Circuits

2) Local Oscillator Application

5. Typical Frequency Response


6. Temperature Characteristics

M: Transmission /M Lon Man

			Ch1:	Mkr1	344.9 -1.0	95 MH 0 dB
	1	,				
						V
			∇			v
			\mathbf{V}			
			V			

5 0 dB/ Ref -1 50 dB

The curve shown above accounts for resonator contribution only and does not include oscillator temperature characteristics.

7. Performance

7-1. Maximum Ratings

Rating		Value	Unit
CW RF Power Dissipation	Р	0	dBm
DC Voltage Between Terminals	V _{DC}	± 30	V
Storage Temperature Range	$T_{\rm stg}$	-40 to +85	°C
Operating Temperature Range	T _A	-10 to +60	°C

7-2. Electronic Characteristics

	Characteristic	Sym	Minimum	Typical	Maximum	Unit
Center Frequency	Absolute Frequency	fc	344.925		345.075	MHz
(+25℃)	Tolerance from 345.000 MHz	Δf_{C}		±75		kHz
Insertion Loss		١L		1.5	2.2	dB
Quality Factor	Unloaded Q	QU		10,020		
	50 Ω Loaded Q	QL		1,600		
	Turnover Temperature	T ₀	25		55	°C
Temperature Stability	Turnover Frequency	f ₀		f _C		kHz
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		0.032		ppm/℃²		
Frequency Aging	Absolute Value during the First Year	fA		≤10		ppm/yr
DC Insulation Resis	tance Between Any Two Terminals		1.0			MΩ
	Motional Resistance	R _M		19	29	Ω
	Motional Inductance	L _M		87.8796		μH
	Motional Capacitance	См		2.4241		fF
	Shunt Static Capacitance	C ₀	2.25	2.55	2.85	pF

(i)CAUTION: Electrostatic Sensitive Device. Observe precautions for handling!

- 1. The center frequency, f_{C} , is measured at the minimum IL point with the resonator in the 50 Ω test system.
- 2. Unless noted otherwise, case temperature $T_c = +25^{\circ}C \pm 2^{\circ}C$.

Electronics Limited

- Frequency aging is the change in $f_{\rm C}$ with time and is specified at +65°C or less. Aging may exceed the 3. specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- Turnover temperature, T₀, is the temperature of maximum (or turnover) frequency, f₀. The nominal frequency at 4. any case temperature, T_c , may be calculated from: $f = f_0 [1 - FTC (T_0 - T_c)^2]$.
- 5. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C_0 is the measured static (nonmotional) capacitance between the two terminals. The measurement includes case parasitic capacitance.
- Derived mathematically from one or more of the following directly measured parameters: f_C, IL, 3 dB bandwidth, 6.
- $f_{\rm C}$ versus $T_{\rm C}$, and $C_{\rm 0}$. The specifications of this device are based on the test circuit shown above and subject to change or 7. obsolescence without notice.
- Typically, equipment utilizing this device requires emissions testing and government approval, which is the 8. responsibility of the equipment manufacturer.
- 9. Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- 10. For questions on technology, prices and delivery, please contact our sales offices or e-mail info@v-torch.com.