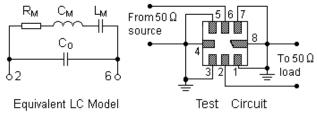


SAW RESONATOR Part Number: VTR30315

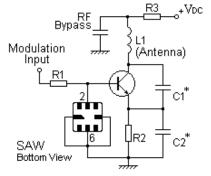
The **VTR30315** is a true one-port, surface-acoustic-wave (**SAW**) resonator in a surface-mount ceramic **QCC8C** case. It provides reliable, fundamental-mode, quartz frequency stabilization i.e. in transmitters or local oscillators operating at **303.825** MHz.

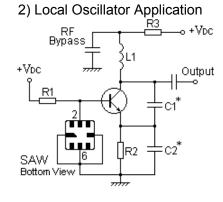
1. Package Dimension (QCC8C)


Pin	Configuration
2	Terminal1
6	Terminal2
4, 8	Case Ground
1, 3, 5, 7	Empty

Sign	Data (unit: mm)	Sign	Data (unit: mm)
А	2.08	Е	1.2
В	0.6	F	1.35
С	1.27	G	5.0
D	2.54	Н	5.0

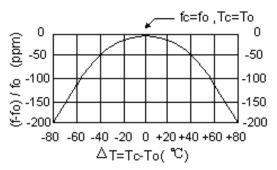
2. Marking


VTR 30315 Laser Marking


3. Equivalent LC Model and Test Circuit

4. Typical Application Circuits

1) Low-Power Transmitter Application


5. Typical Frequency Response

6. Temperature Characteristics

▶1:Transmission /M Log Mag 5.0 dB/ Ref -1.50 dB

				Ch1:	Mkr1	303.821 MH -1.21 dB		
		1				-1.2		
		لمسر						
			\backslash					
			\setminus				$ \land $	
				\setminus				
				1	/			
				\backslash				
				V				
	-							
enter 30	2 825 MI				50	an Ø.7	50 MH	

The curve shown above accounts for resonator contribution only and does not include oscillator temperature characteristics.

7. Performance

7-1. Maximum Ratings

Rating		Value	Unit
CW RF Power Dissipation	Р	0	dBm
DC Voltage Between Terminals	V _{DC}	±30	V
Storage Temperature Range	T _{stg}	-40 to +85	°C
Operating Temperature Range	T _A	-10 to +60	°C

7-2. Electronic Characteristics

	Characteristic	Sym	Minimum	Typical	Maximum	Unit
Center Frequency	Absolute Frequency	f _C	303.750		303.900	MHz
(+25℃)	Tolerance from 303.825 MHz	Δf_{C}		±75		kHz
Insertion Loss		IL		1.4	2.0	dB
Quality Factor	Unloaded Q	Qu		13,100		
	50 Ω Loaded Q	QL		1,950		
	Turnover Temperature	T ₀	25		55	°C
Temperature Stability	Turnover Frequency	f ₀		f _C		kHz
	Frequency Temperature Coefficient	FTC		0.032	5 2.0 00 55 32 55 5 26 852 74	ppm/℃ ²
Frequency Aging	Absolute Value during the First Year	fA		≤10		ppm/yr
DC Insulation Resist	tance Between Any Two Terminals		1.0			MΩ
RF Equivalent RLC Model	Motional Resistance	R _M		17.5	26	Ω
	Motional Inductance	L _M		120.0852		μH
	Motional Capacitance	См		2.2874		fF
	Shunt Static Capacitance	C ₀	2.40	2.65	2.90	pF

(i)CAUTION: Electrostatic Sensitive Device. Observe precautions for handling!

- 1. The center frequency, f_c , is measured at the minimum IL point with the resonator in the 50 Ω test system.
- 2. Unless noted otherwise, case temperature $T_c = +25^{\circ}C \pm 2^{\circ}C$.
- Frequency aging is the change in f_C with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 4. Turnover temperature, T_0 , is the temperature of maximum (or turnover) frequency, f_0 . The nominal frequency at any case temperature, T_c , may be calculated from: $f = f_0 [1 FTC (T_0 T_c)^2]$.
- 5. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C₀ is the measured static (nonmotional) capacitance between the two terminals. The measurement includes case parasitic capacitance.
- 6. Derived mathematically from one or more of the following directly measured parameters: f_C, IL, 3 dB bandwidth, f_C versus T_C, and C₀.
- 7. The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- 8. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 9. Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- 10. For questions on technology, prices and delivery, please contact our sales offices or e-mail info@v-torch.com