


# SAW RESONATOR

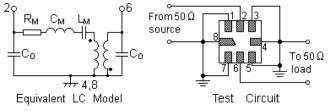
Part Number: VTR3155B

The **VTR3155B** is a two-port, 180° surface-acoustic-wave (**SAW**) resonator in a surface-mount ceramic **QCC8C** case. It provides reliable, fundamental-mode, quartz frequency stabilization i.e. in transmitters or local oscillators operating at **315.000** MHz.

## 1. Package Dimension (QCC8C)

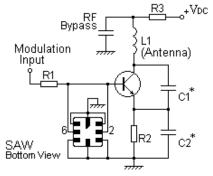


| Configuration |
|---------------|
| Terminal1     |
| Terminal2     |
| Case Ground   |
| Empty         |
|               |

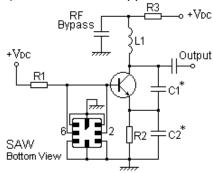

| Sign | Data (unit: mm) | Sign | Data (unit: mm) |  |  |
|------|-----------------|------|-----------------|--|--|
| А    | 2.08            | Е    | 1.2             |  |  |
| В    | 0.6             | F    | 1.35            |  |  |
| С    | 1.27            | G    | 5.0             |  |  |
| D    | 2.54            | Н    | 5.0             |  |  |

2. Marking

**VTR3155B** 


Laser Marking

# 3. Equivalent LC Model and Test Circuit

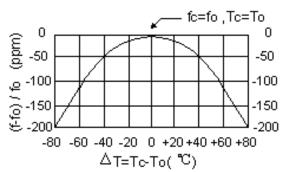



## 4. Typical Application Circuits

1) Low-Power Transmitter Application



### 2) Local Oscillator Application






## 5. Typical Frequency Response

# S21 LOG 5 dB/REF -5 dB 21-4.5531 dB 315.000 000 MHz

## 6. Temperature Characteristics



The curve shown above accounts for resonator contribution only and does not include LC component temperature characteristics.

## 7. Performance

7-1. Maximum Ratings

| Rating                       |                 | Value      | Unit |
|------------------------------|-----------------|------------|------|
| CW RF Power Dissipation      | Р               | 0          | dBm  |
| DC Voltage Between Terminals | V <sub>DC</sub> | 12         | V    |
| Storage Temperature Range    | $T_{\rm stg}$   | -45 to +85 | °C   |
| Operating Temperature Range  | T <sub>A</sub>  | -45 to +85 | °C   |

## 7-2. Electronic Characteristics

|                                                      | Characteristic                    | Sym            | Minimum | Typical  | Maximum | Unit               |
|------------------------------------------------------|-----------------------------------|----------------|---------|----------|---------|--------------------|
| Center Frequency<br>(+25℃)                           | Absolute Frequency                | fc             | 314.925 |          | 315.075 | MHz                |
|                                                      | Tolerance from 315.000 MHz        | $\Delta f_{C}$ |         | ±75      |         | kHz                |
| Insertion Loss                                       |                                   | IL             |         | 5.0      | 7.0     | dB                 |
| Quality Factor                                       | Unloaded Q                        | QU             |         | 17,800   |         |                    |
|                                                      | 50 $\Omega$ Loaded Q              | $Q_L$          |         | 7,800    |         |                    |
|                                                      | Turnover Temperature              | To             | 25      |          | 45      | °C                 |
| Temperature<br>Stability                             | Turnover Frequency                | f <sub>O</sub> |         | fc       |         | kHz                |
|                                                      | Frequency Temperature Coefficient | FTC            |         | 0.032    |         | ppm/℃ <sup>2</sup> |
| Frequency Aging Absolute Value during the First Year |                                   | f <sub>A</sub> |         | ≤10      |         | ppm/yr             |
| DC Insulation Resistance Between Any Two Terminals   |                                   |                | 1.0     |          |         | MΩ                 |
| RF Equivalent<br>RLC Model                           | Motional Resistance               | R <sub>M</sub> |         | 78       | 124     | Ω                  |
|                                                      | Motional Inductance               | L <sub>M</sub> |         | 701.8502 |         | μH                 |
|                                                      | Motional Capacitance              | См             |         | 0.3641   |         | fF                 |
|                                                      | Shunt Static Capacitance          | Co             | 1.25    | 1.45     | 1.75    | pF                 |

## **(i)**CAUTION: Electrostatic Sensitive Device. Observe precautions for handling!



- 1. The frequency  $f_c$  is the frequency of minimum IL with the resonator in the specified test fixture in a 50 $\Omega$  test system with VSWR<1.2:1.
- 2. Unless noted otherwise, case temperature  $T_c = +25^{\circ}C \pm 2^{\circ}C$ .
- Frequency aging is the change in f<sub>C</sub> with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 4. Turnover temperature,  $T_0$ , is the temperature of maximum (or turnover) frequency,  $f_0$ . The nominal frequency at any case temperature,  $T_c$ , may be calculated from:  $f = f_0 [1 FTC (T_0 T_c)^2]$ .
- 5. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C<sub>0</sub> is the measured static (nonmotional) capacitance between input terminal and ground or output terminal and ground. The measurement includes case parasitic capacitance.
- 6. Derived mathematically from one or more of the following directly measured parameters:  $f_c$ , IL, 3 dB bandwidth,  $f_c$  versus  $T_c$ , and  $C_0$ .
- 7. The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- 8. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 9. Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- 10. For questions on technology, prices and delivery, please contact our sales offices or e-mail info@v-torch.com