


# SAW RESONATOR Part Number: VTR3145S

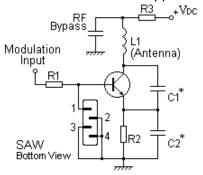
The **VTR3145S** is a true one-port, surface-acoustic-wave (**SAW**) resonator in a low-profile metal **F11-SMD** case. It provides reliable, fundamental-mode, quartz frequency stabilization i.e. in transmitters or local oscillators operating at **314.500** MHz.

#### 1. Package Dimension (F11-SMD)

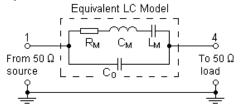




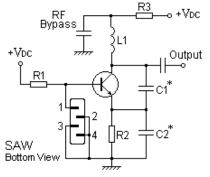
| Pin        | Configuration   |
|------------|-----------------|
| 1, 4       | Input / Output  |
| 2/3        | Case Ground     |
| Dimensions | Data (unit: mm) |
| А          | 11.0±0.5        |
| В          | 4.5±0.5         |
| С          | 2.45±0.2        |
| D          | 0.6±0.05        |
| E          | 4.1±0.3         |
| F          | 3.4±0.3         |
| G          | 2.54±0.2        |


## 2. Marking

## **VTR3145S**


Ink Marking Color: Black or Blue

#### 4. Typical Application Circuits


1) Low-Power Transmitter Application

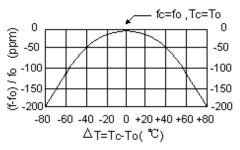


## 3. Equivalent LC Model and Test Circuit



2) Local Oscillator Application




#### 5. Typical Frequency Response

#### 6. Temperature Characteristics



|         |       |       |      |   | Ch1:         | Mkr1 | 314.5<br>-1.3Ø | ØØ МН:<br>3 dB |
|---------|-------|-------|------|---|--------------|------|----------------|----------------|
|         |       |       | 4    | 2 |              |      |                |                |
|         |       |       | <br> | / |              |      |                |                |
|         |       |       |      |   | $\backslash$ |      |                |                |
|         |       |       |      |   |              |      |                |                |
|         |       |       |      |   |              |      |                |                |
|         |       |       |      |   |              | /    |                |                |
|         |       |       |      |   | l            | /    |                |                |
|         |       |       |      |   |              |      |                |                |
|         |       |       |      |   |              |      |                |                |
| enter 3 | 14.50 | 8 MHz | <br> |   |              | Sp   | an Ø.7         | 750 MH         |





The curve shown above accounts for resonator contribution only and does not include oscillator temperature characteristics.

#### 7. Performance

#### 7-1.Maximum Ratings

| Rating                       |                 | Value      | Unit |
|------------------------------|-----------------|------------|------|
| CW RF Power Dissipation      | Р               | 0          | dBm  |
| DC Voltage Between Terminals | V <sub>DC</sub> | ±30        | V    |
| Storage Temperature Range    | $T_{\rm stg}$   | -40 to +85 | °C   |
| Operating Temperature Range  | T <sub>A</sub>  | -10 to +60 | °C   |

### 7-2. Electronic Characteristics

|                            | Characteristic                            | Sym            | Minimum | Typical        | Maximum | Unit               |
|----------------------------|-------------------------------------------|----------------|---------|----------------|---------|--------------------|
| Center Frequency<br>(+25℃) | Absolute Frequency                        | f <sub>C</sub> | 314.425 |                | 314.575 | MHz                |
|                            | Tolerance from 314.500 MHz                | $\Delta f_{C}$ |         | ±75            |         | kHz                |
| Insertion Loss             | on Loss                                   |                |         | 1.6            | 2.2     | dB                 |
| Quality Factor             | Unloaded Q                                | QU             |         | 12,300         |         |                    |
|                            | 50 $\Omega$ Loaded Q                      | QL             |         | 2,050          |         |                    |
|                            | Turnover Temperature                      | Τo             | 25      |                | 55      | °C                 |
| Temperature<br>Stability   | Turnover Frequency                        | f <sub>O</sub> |         | f <sub>C</sub> |         | kHz                |
|                            | Frequency Temperature Coefficient         | FTC            |         | 0.032          |         | ppm/℃ <sup>2</sup> |
| Frequency Aging            | ging Absolute Value during the First Year |                |         | ≤10            |         | ppm/yr             |
| DC Insulation Resis        | tance Between Any Two Terminals           |                | 1.0     |                |         | MΩ                 |
| RF Equivalent<br>RLC Model | Motional Resistance                       | R <sub>M</sub> |         | 20             | 29      | Ω                  |
|                            | Motional Inductance                       | L <sub>M</sub> |         | 124.5532       |         | μH                 |
|                            | Motional Capacitance                      | См             |         | 2.0582         |         | fF                 |
|                            | Shunt Static Capacitance                  | Co             | 2.2     | 2.5            | 2.8     | pF                 |

## **(i)** CAUTION: Electrostatic Sensitive Device. Observe precautions for handling!



- Electronics Limited
- 1. The center frequency,  $f_c$ , is measured at the minimum IL point with the resonator in the 50 $\Omega$  test system.
- 2. Unless noted otherwise, case temperature  $T_c = +25^{\circ}C \pm 2^{\circ}C$ .
- Frequency aging is the change in f<sub>c</sub> with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 4. Turnover temperature,  $T_0$ , is the temperature of maximum (or turnover) frequency,  $f_0$ . The nominal frequency at any case temperature,  $T_c$ , may be calculated from:  $f = f_0 [1 FTC (T_0 T_c)^2]$ .
- 5. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C<sub>0</sub> is the measured static (nonmotional) capacitance between Terminal1 and Terminal4. The measurement includes case parasitic capacitance.
- 6. Derived mathematically from one or more of the following directly measured parameters:  $f_c$ , IL, 3 dB bandwidth,  $f_c$  versus  $T_c$ , and  $C_0$ .
- 7. The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- 8. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 9. Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- 10. For questions on technology, prices and delivery, please contact our sales offices or e-mail info@v-torch.com.