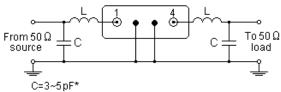

SAW FILTER

Part Number: VTF914M

The **VTF914M** is a low-loss, compact, and economical surface-acoustic-wave (**SAW**) filter in a low-profile metal **F-11** case designed to provide front-end selectivity in **914.500** MHz receivers. Receiver designs using this filter include superhet with 10.7 MHz or 500 kHz IF, direct conversion and superregen.

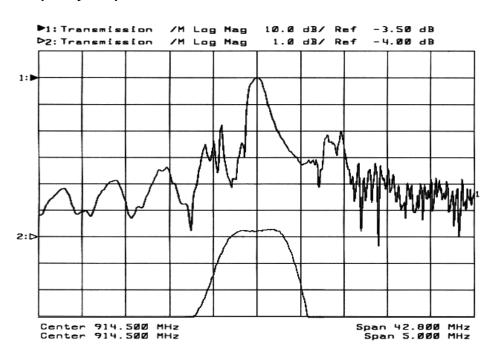
1. Package Dimension (F-11)

Pin	Configuration			
1	Input / Output			
4	Output / Input			
2/3	Case Ground			


Dimensions	Data (unit: mm)			
Α	11.0±0.3			
В	4.5±0.3			
С	3.2±0.3			
D	0.45±0.1			
E	5.0±0.5			
F	2.54±0.2			

2. Marking

VTF914M


Color: Black or Blue

3. Test Circuit

L=2 turns of 0.5mm insulated Copper, 2.0mm ID

4. Typical Frequency Response

www.v-torch.com Tel: 86-755-8363 5090 Fax: 86-755-8950 7007 Page 1 of 2

5. Performance

5-1. Maximum Rating

Rating	Value	Unit	
CW RF Power Dissipation	Р	10	dBm
DC Voltage Between Any Two Pins	$V_{ m DC}$	±30	V
Storage Temperature Range		-40 to +85	$^{\circ}$
Operating Temperature Range	T_{A}	-10 to +60	$^{\circ}$

5-2. Electronic Characteristics

Characteristic		Minimum	Typical	Maximum	Unit	
Center Frequency (center frequency between 3dB points)		$f_{\mathbb{C}}$		914.500		MHz
Insertion Loss		IL		3.8	5.0	dB
3dB Bandwidth		BW_3		1,200		kHz
Rejection	at f _C -21.4MHz (Image)		35	50		dB
	at f _C -10.7MHz (LO)		25	40		
	Ultimate			60		
Temperature	Turnover Temperature	T_{O}	25		55	$^{\circ}$ C
	Turnover Frequency	f_{O}		f_{C}		MHz
	Frequency Temperature Coefficient	FTC		0.032		ppm/°C²
Frequency Aging Absolute Value during the First Year		<i>fA</i>		10		Ppm/yr

(i) CAUTION: Electrostatic Sensitive Device. Observe precautions for handling!

- 1. The frequency f_C is defined as the midpoint between the 3dB frequencies.
- 2. Unless noted otherwise, all measurements are made with the filter installed in the specified test fixture that is connected to a 50Ω test system with VSWR≤1.2:1. The test fixture L and C are adjusted for minimum insertion loss at the filter center frequency, f_C. Note that insertion loss, bandwidth, and passband shape are dependent on the impedance matching component values and quality.
- 3. Unless noted otherwise, specifications apply over the entire specified operating temperature range.
- Frequency aging is the change in f_C with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 5. Turnover temperature, T_0 , is the temperature of maximum (or turnover) frequency, f_0 . The nominal frequency at any case temperature, T_C , may be calculated from: $f = f_0 [1 FTC (T_0 T_C)^2]$.
- The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- 7. All equipment designs utilizing this product must be approved by the appropriate government agency prior to manufacture or sale.
- 8. Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- 9. For questions on technology, prices and delivery, please contact our sales offices or e-mail info@v-torch.com

www.v-torch.com Tel: 86-755-8363 5090 Fax: 86-755-8950 7007 Page 2 of 2