

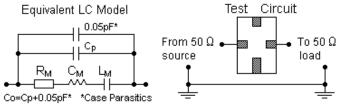
SAW RESONATOR

Part Number: VTR30324

The VTR30324 is a true one-port, surface-acoustic-wave (SAW) resonator in a surface-mount ceramic QCC4A case. It provides reliable, fundamental-mode, quartz frequency stabilization i.e. in transmitters or local oscillators operating at 303.875 MHz.

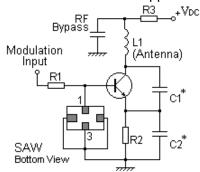
1. Package Dimension (QCC4A)

Pin	Configuration			
1	Input / Output			
3	Output / Input			
2/4	Case Ground			

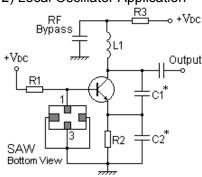

Sign	Data (unit: mm)	Sign	Data (unit: mm)
Α	1.2	D	1.4
В	0.8	Е	5.0
С	0.5	F	3.5

2. Marking

VTR 30324


Laser Marking

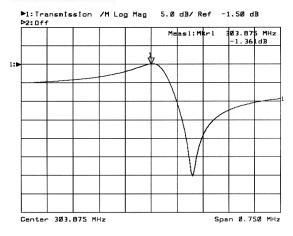
3. Equivalent LC Model and Test Circuit

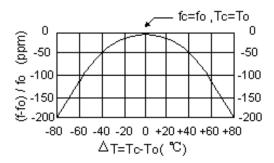


4. Typical Application Circuits

1) Low-Power Transmitter Application

2) Local Oscillator Application




5. Typical Frequency Response

6. Temperature Characteristics

www.v-torch.com Tel: 86-755-8363 5090 Fax: 86-755-8950 7007 Page 1 of 3

The curve shown above accounts for resonator contribution only and does not include oscillator temperature characteristics.

7. Performance

7-1. Maximum Ratings

Rating		Value	Unit	
CW RF Power Dissipation	P	0	dBm	
DC Voltage Between Terminals	$V_{ m DC}$	±30	V	
Storage Temperature Range	$T_{ m stg}$	-40 to +85	$^{\circ}$	
Operating Temperature Range	T _A	-10 to +60	$^{\circ}$	

7-2. Electronic Characteristics

	Characteristic	Sym	Minimum	Typical	Maximum	Unit
Center Frequency (+25°C)	Absolute Frequency	f _C	303.800		303.950	MHz
	Tolerance from 303.875 MHz	Δf_{C}		±75		kHz
Insertion Loss		IL		1.6	2.2	dB
Quality Factor	Unloaded Q	Q _U		13,200		
	50 Ω Loaded Q	Q_L		2,200		
Temperature Stability	Turnover Temperature	T ₀	35		55	$^{\circ}$
	Turnover Frequency	f ₀		f _C		kHz
	Frequency Temperature Coefficient	FTC		0.032		ppm/°C²
Frequency Aging	Absolute Value during the First Year	$ f_A $		≤10		ppm/yr
DC Insulation Resis	tance Between Any Two Terminals		1.0			ΜΩ
RF Equivalent RLC Model	Motional Resistance	R_{M}		20	29	Ω
	Motional Inductance	L _M		138.3405		μН
	Motional Capacitance	См		1.9849		fF
	Shunt Static Capacitance	C ₀	2.15	2.45	2.75	pF

(i) CAUTION: Electrostatic Sensitive Device. Observe precautions for handling!

www.v-torch.com Tel: 86-755-8363 5090 Fax: 86-755-8950 7007 Page 2 of 3

- The center frequency, f_C, is measured at the minimum IL point with the resonator in the 50Ω test system.
- 2. Unless noted otherwise, case temperature T_C = +25°C±2°C.
- Frequency aging is the change in f_C with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 4. Turnover temperature, T_0 , is the temperature of maximum (or turnover) frequency, f_0 . The nominal frequency at any case temperature, T_C , may be calculated from: $f = f_0 \left[1 FTC \left(T_0 T_C \right)^2 \right]$.
- 5. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C₀ is the measured static (nonmotional) capacitance between the two terminals. The measurement includes case parasitic capacitance.
- Derived mathematically from one or more of the following directly measured parameters: f_C, IL, 3 dB bandwidth, f_C versus T_C, and C₀.
- The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- 8. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 9. Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- 10. For questions on technology, prices and delivery, please contact our sales offices or e-mail info@v-torch.com.

www.v-torch.com Tel: 86-755-8363 5090 Fax: 86-755-8950 7007 Page 3 of 3