

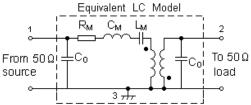
SAW RESONATOR

Part Number: VTR392B

The VTR392B is a two-port, 180° surface-acoustic-wave (SAW) resonator in a low-profile metal TO-39 case. It provides reliable, fundamental-mode, quartz frequency stabilization i.e. in transmitters or local oscillators operating at 392.000 MHz.

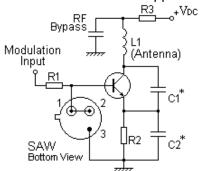
1. Package Dimension (TO-39)

Pin	Configuration			
1	Input / Output			
2	Output / Input			
3	Case Ground			

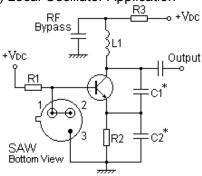

Dimension	Data (unit: mm)		
А	9.15±0.20		
В	5.08±0.20		
С	3.30±0.20		
D	3±0.20 / 5±0.20		
E	0.45±0.10		

2. Marking

VTR392B


Color: Black or Blue

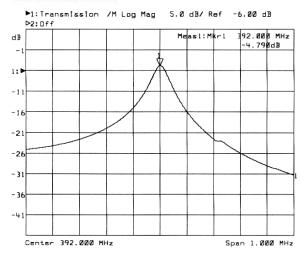
3. Equivalent LC Model and Test Circuit

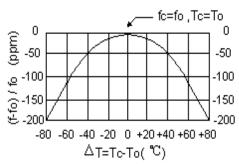


4. Typical Application Circuits

1) Low-Power Transmitter Application

2) Local Oscillator Application




5. Typical Frequency Response

6. Temperature Characteristics

www.v-torch.com Tel: 86-755-8363 5090 Fax: 86-755-8950 7007 Page 1 of 4

The curve shown above accounts for resonator contribution only and does not include LC component temperature characteristics.

7. Performance

7-1.Maximum Ratings

Rating	Value	Unit	
CW RF Power Dissipation	Р	10	dBm
DC Voltage Between Any Two Pins	V_{DC}	±30	V
Storage Temperature Range	$T_{\rm stg}$	-40 to +85	$^{\circ}$
Operating Temperature Range	T _A	-10 to +60	$^{\circ}$

7-2. Electronic Characteristics

	Characteristic	Sym	Minimum	Typical	Maximum	Unit
Center Frequency (+25°C)	Absolute Frequency	f _C	391.925		392.075	MHz
	Tolerance from 392.000 MHz	Δf_{C}		±75		kHz
Insertion Loss		IL		5.5	7.0	dB
Quality Factor	Unloaded Q	Q_U		13,850		
	50 Ω Loaded Q	QL		6,500		
	Turnover Temperature	To	25		55	$^{\circ}$ C
Temperature Stability	Turnover Frequency	f _O		fc		kHz
	Frequency Temperature Coefficient	FTC		0.032		ppm/°C²
Frequency Aging Absolute Value during the First Year		f _A		≤10		ppm/yr
DC Insulation Resistance Between Any Two Pins			1.0			MΩ
RF Equivalent RLC Model	Motional Resistance	R _M		88.5	124	Ω
	Motional Inductance	L _M		497.713		μН
	Motional Capacitance	См	_	0.331535		fF
	Shunt Static Capacitance	Co	1.65	1.95	2.25	pF

(i) CAUTION: Electrostatic Sensitive Device. Observe precautions for handling!

www.v-torch.com Tel: 86-755-8363 5090 Fax: 86-755-8950 7007 Page 2 of 4

- 1. The frequency f_C is the frequency of minimum IL with the resonator in the specified test fixture in a 50Ω test system with VSWR \leq 1.2:1. Typically, $f_{OSCILLATOR}$ or $f_{TRANSMITTER}$ is less than the resonator f_C .
- 2. Unless noted otherwise, case temperature $T_C = +25^{\circ}C \pm 2^{\circ}C$.
- 3. Frequency aging is the change in f_C with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 4. Turnover temperature, T_0 , is the temperature of maximum (or turnover) frequency, f_0 . The nominal frequency at any case temperature, T_C , may be calculated from: $f = f_0 [1 FTC (T_0 T_C)^2]$. Typically, oscillator T_0 is 20° less than the specified resonator T_0 .
- 5. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C₀ is the measured static (nonmotional) capacitance between either Pin 1 and ground or Pin 2 and ground. The measurement includes case parasitic capacitance.
- Derived mathematically from one or more of the following directly measured parameters: f_C, IL, 3 dB bandwidth, f_C versus T_C, and C₀.
- The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- 8. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 9. Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- 10. For questions on technology, prices and delivery, please contact our sales offices or e-mail info@v-torch.com

www.v-torch.com Tel: 86-755-8363 5090 Fax: 86-755-8950 7007 Page 3 of 4