

SAW RESONATOR Part Number: VTR316N

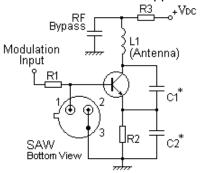
The **VTR316N** is a true one-port, surface-acoustic-wave (**SAW**) resonator in a low-profile metal **TO-39** case. It provides reliable, fundamental-mode, quartz frequency stabilization i.e. in transmitters or local oscillators operating at **316.800** MHz.

1. Package Dimension (TO-39)

Pin	Configuration		
1	Input / Output		
2	Output / Input		
3	Case Ground		

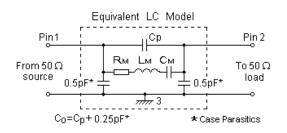
Dimension	Data (unit: mm)		
А	9.15±0.20		
В	5.08±0.20		
С	3.30±0.20		
D	3±0.20/5±0.20		
E	0.45±0.10		

2. Marking

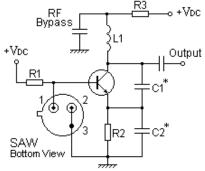

VTR

316N

Ink Marking Color: Black or Blue


4. Typical Application Circuits

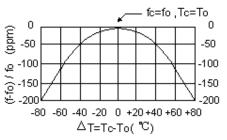
1) Low-Power Transmitter Application



5. Typical Frequency Response

3. Equivalent LC Model and Test Circuit

2) Local Oscillator Application



6. Temperature Characteristics

▶1:Transmission /M Log Mag S.Ø dB/ Ref -1.50 dB

	Ch1:Mkr1		316.810 MH -0.82 dB	
V		-		
N	1			
Λ (1			
$ \rangle/$				
V				
			Span 1.0	

The curve shown above accounts for resonator contribution only and does not include oscillator temperature characteristics.

7. Performance

7-1.Maximum Ratings

Rating		Value	Unit
CW RF Power Dissipation	Р	0	dBm
DC Voltage Between Any two Pins	V _{DC}	±30	V
Storage Temperature Range	$T_{\rm stg}$	-40 to +85	°C
Operating Temperature Range	T _A	-10 to +60	°C

7-2. Electronic Characteristics

	Characteristic	Sym	Minimum	Typical	Maximum	Unit
Center Frequency (+25℃)	Absolute Frequency	f _C	316.725		316.875	MHz
	Tolerance from 316.800 MHz	Δf_{C}		±75		kHz
Insertion Loss	Insertion Loss			1.3	1.8	dB
Quality Factor	Unloaded Q	Qu		13,800		
	50 Ω Loaded Q	QL		1,900		
	Turnover Temperature	T ₀	25		55	°C
Temperature Stability	Turnover Frequency	f ₀		fc		kHz
	Frequency Temperature Coefficient	FTC		0.032		ppm/℃ ²
Frequency Aging	Absolute Value during the First Year	f _A		≤10		ppm/yr
DC Insulation Resistance Between Any Two Pins			1.0			MΩ
RF Equivalent RLC Model	Motional Resistance	R _M		16	23	Ω
	Motional Inductance	L _M		110.7814		μH
	Motional Capacitance	См		2.2806		fF
	Pin 1 to Pin 2 Static Capacitance	C ₀	2.35	2.65	2.95	pF

(i)CAUTION: Electrostatic Sensitive Device. Observe precautions for handling!

^{1.} The center frequency, f_c , is measured at the minimum IL point with the resonator in the 50 Ω test system.

^{2.} Unless noted otherwise, case temperature $T_C = +25^{\circ}C\pm 2^{\circ}C$.

Frequency aging is the change in f_c with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.

Electronics Limited

- 4. Turnover temperature, T₀, is the temperature of maximum (or turnover) frequency, f₀. The nominal frequency at any case temperature, T_C, may be calculated from: $f = f_0 [1 FTC (T_0 T_C)^2]$.
- 5. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C₀ is the measured static (nonmotional) capacitance between Pin1 and Pin2. The measurement includes case parasitic capacitance.
- 6. Derived mathematically from one or more of the following directly measured parameters: f_c , IL, 3 dB bandwidth, f_c versus T_c , and C_0 .
- 7. The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- 8. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 9. Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- 10. For questions on technology, prices and delivery, please contact our sales offices or e-mail info@v-torch.com.