

SAW RESONATOR Part Number: VTR315N

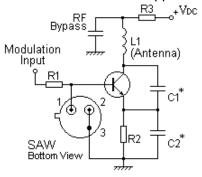
The **VTR315N** is a true one-port, surface-acoustic-wave (**SAW**) resonator in a low-profile metal **TO-39** case. It provides reliable, fundamental-mode, quartz frequency stabilization i.e. in transmitters or local oscillators operating at **315.500** MHz.

1. Package Dimension (TO-39)

Pin	Configuration
1	Input / Output
2	Output / Input
3	Case Ground

Dimension Data (unit: mm		
А	9.15±0.20	
В	5.08±0.20	
С	3.30±0.20	
D	3±0.20/5±0.20	
E	0.45±0.10	

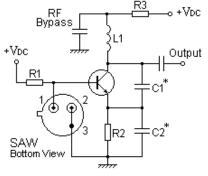
2. Marking


VTR

315N

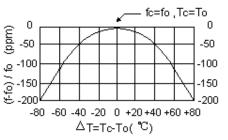
Ink Marking Color: Black or Blue

4. Typical Application Circuits


1) Low-Power Transmitter Application

3. Equivalent LC Model and Test Circuit

2) Local Oscillator Application


5. Typical Frequency Response

6. Temperature Characteristics

▶1: Transmission /M Log Mag 5.0 dB/ Ref -1.50 dB

Ch1:	Ch1:Mkr1		315.500 MH -1.00 dB	
Ν			-	
\backslash	1			
	1			
	V			
	1			
		Ch1:Mkr1	Ch1:Mkr1 315.5 -1.0	

The curve shown above accounts for resonator contribution only and does not include oscillator temperature characteristics.

7. Performance

7-1.Maximum Ratings

Rating		Value	Unit
CW RF Power Dissipation	Ρ	0	dBm
DC Voltage Between Any two Pins	V _{DC}	±30	V
Storage Temperature Range	$T_{\rm stg}$	-40 to +85	°C
Operating Temperature Range	T _A	-10 to +60	°C

7-2. Electronic Characteristics

	Characteristic	Sym	Minimum	Typical	Maximum	Unit
Center Frequency (+25℃)	Absolute Frequency	f _C	315.425		315.575	MHz
	Tolerance from 315.500 MHz	Δf_{C}		±75		kHz
Insertion Loss		IL		1.2	1.8	dB
Quality Factor	Unloaded Q	Q _U		14,550		
	50 Ω Loaded Q	QL		1,900		
	Turnover Temperature	T ₀	25		55	°C
Temperature Stability	Turnover Frequency	f ₀		f _C		kHz
	Frequency Temperature Coefficient	FTC		0.032		ppm/℃ ²
Frequency Aging	Absolute Value during the First Year	f _A		≤10		ppm/yr
DC Insulation Resis	tance Between Any Two Pins		1.0			MΩ
RF Equivalent RLC Model	Motional Resistance	R _M		15	23	Ω
	Motional Inductance	L _M		110.2789		μH
	Motional Capacitance	C _M		2.3099		fF
	Pin 1 to Pin 2 Static Capacitance	C ₀	2.4	2.7	3.0	pF

(i)CAUTION: Electrostatic Sensitive Device. Observe precautions for handling!

- 1. The center frequency, f_{C} , is measured at the minimum IL point with the resonator in the 50 Ω test system.
- 2. Unless noted otherwise, case temperature $T_C = +25^{\circ}C \pm 2^{\circ}C$.
- 3. Frequency aging is the change in f_c with time and is specified at +65°C or less. Aging may exceed the specification

Electronics Limited

for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.

- 4. Turnover temperature, T₀, is the temperature of maximum (or turnover) frequency, f₀. The nominal frequency at any case temperature, T_c, may be calculated from: $f = f_0 [1 FTC (T_0 T_c)^2]$.
- 5. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C₀ is the measured static (nonmotional) capacitance between Pin1 and Pin2. The measurement includes case parasitic capacitance.
- 6. Derived mathematically from one or more of the following directly measured parameters: f_C, IL, 3 dB bandwidth, f_C versus T_C, and C₀.
- 7. The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- 8. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 9. Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- 10. For questions on technology, prices and delivery, please contact our sales offices or e-mail info@v-torch.com