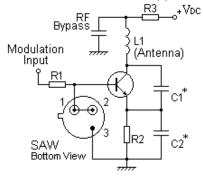


SAW RESONATOR Part Number: VTR433D

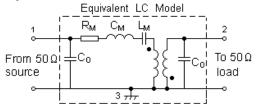
The **VTR433D** is a two-port, 180° surface-acoustic-wave (**SAW**) resonator in a low-profile metal **TO-39** case. It provides reliable, fundamental-mode, quartz frequency stabilization i.e. in transmitters or local oscillators operating at **433.420** MHz.


1. Package Dimension (TO-39)

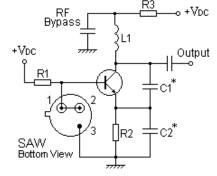
Pin	Configuration				
1	Input / Output				
2	Output / Input				
3	Case Ground				
Dimension	Data (unit: mm)				
А	9.15±0.20				
A B	9.15±0.20 5.08±0.20				
В	5.08±0.20				


2. Marking

VTR433D

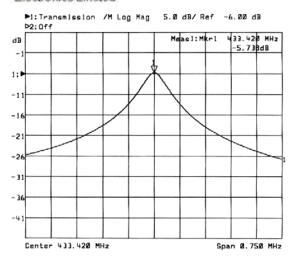

4. Typical Application Circuits

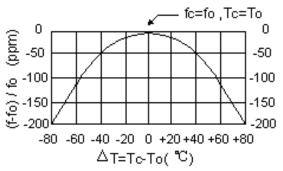
1) Low-Power Transmitter Application



5. Typical Frequency Response

3. Equivalent LC Model and Test Circuit




2) Local Oscillator Application

6. Temperature Characteristics

The curve shown above accounts for resonator contribution only and does not include LC component temperature characteristics.

7. Performance

7-1.Maximum Ratings

Rating	Value	Unit	
CW RF Power Dissipation	Р	10	dBm
DC Voltage Between Any Two Pins	V _{DC}	±30	V
Storage Temperature Range	T _{stg}	-40 to +85	°C
Operating Temperature Range	T _A	-10 to +60	°C

7-2. Electronic Characteristics

	Characteristic	Sym	Minimum	Typical	Maximum	Unit
Center Frequency (+25℃)	Absolute Frequency	f _C	433.345		433.495	MHz
	Tolerance from 433.420 MHz	Δf_{C}		±75		kHz
Insertion Loss		IL		6.0	8.0	dB
Quality Factor	Unloaded Q	Q _U		13,000		
	50 Ω Loaded Q	QL		6,500		
Temperature Stability	Turnover Temperature	To	25		55	°C
	Turnover Frequency	f ₀		fc		kHz
	Frequency Temperature Coefficient	FTC		0.032		ppm/℃ ²
Frequency Aging Absolute Value during the First Year		f _A		≤10		ppm/yr
DC Insulation Resistance Between Any Two Pins			1.0			MΩ
RF Equivalent RLC Model	Motional Resistance	R _M		99.5	151	Ω
	Motional Inductance	L _M		476.4175		μH
	Motional Capacitance	См		0.28332		fF
	Shunt Static Capacitance	Co	1.6	1.9	2.2	pF

(i) CAUTION: Electrostatic Sensitive Device. Observe precautions for handling!

Electronics Limited

- 1. The frequency f_c is the frequency of minimum IL with the resonator in the specified test fixture in a 50 Ω test system with VSWR \leq 1.2:1. Typically, $f_{OSCILLATOR}$ or $f_{TRANSMITTER}$ is less than the resonator f_c .
- 2. Unless noted otherwise, case temperature $T_c = +25^{\circ}C \pm 2^{\circ}C$.
- Frequency aging is the change in f_c with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 4. Turnover temperature, T_0 , is the temperature of maximum (or turnover) frequency, f_0 . The nominal frequency at any case temperature, T_c , may be calculated from: $f = f_0 [1 FTC (T_0 T_c)^2]$. Typically, *oscillator* T_0 is 20° less than the specified *resonator* T_0 .
- 5. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C₀ is the measured static (nonmotional) capacitance between either Pin 1 and ground or Pin 2 and ground. The measurement includes case parasitic capacitance.
- 6. Derived mathematically from one or more of the following directly measured parameters: f_C, IL, 3 dB bandwidth, f_C versus T_C, and C₀.
- 7. The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- 8. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 9. Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- 10. For questions on technology, prices and delivery, please contact our sales offices or e-mail info@v-torch.com