
SAW FILTER

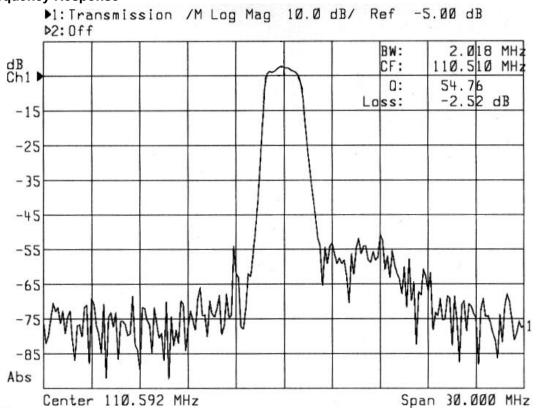
Part Number: VTF11059

The **VTF11059** is a low-loss, compact, and economical surface-acoustic-wave (SAW) IF filter in a surface-mount ceramic SMP-03 case with center frequency **110.592** MHz.

3. Test Circuit

1. Package Dimension (SMP-03)

Pin	Configuration			
9	Input			
4	Output			
Others	Ground			


2. Marking

VTF11059

Laser Marking

From 50Ω 250Ω 250Ω 250Ω To 50Ω load

4. Frequency Response

www.v-torch.com Tel: 86-755-8363 5090 Fax: 86-755-8950 7007 Page 1 of 2

5. Performance

5-1. Maximum Ratings

Rating	Value	Unit	
Input Power Level	Р	0	dBm
DC Voltage	$V_{ m DC}$	3	V
Storage Temperature Range	T_{stg}	-40 to +85	$^{\circ}$
Operable Temperature Range	T _A	-20 to +70	$^{\circ}$

5-2. Electronic Characteristics

Characteristic		Minimum	Typical	Maximum	Unit	
Nominal Center Frequency	$f_{\mathbb{C}}$	-	110.592		MHz	
User Signal Band	BW		±576		kHz	
Insertion Loss	IL		3.5	4.5	dB	
Relative Attenuation (relative to IL) 1) $f_{\rm C} - 5.0 {\rm MHz}$ 2) $f_{\rm C} - 3.5 {\rm MHz}$ 3) $f_{\rm C} \pm 2.0 {\rm MHz}$ 4) $f_{\rm C} + 3.5 {\rm MHz}$ 5) $f_{\rm C} + 5.0 {\rm MHz}$	a rel €	50 42 30 40 40	62 50 40 52 50	 	dB dB dB dB dB	
Group delay ripple (p-p) $f_{\rm C}$ - 576 kHz $f_{\rm C}$ + 576 kHz	Δτ		0.4	0.7	μs	
Input / Output Impedance (Nominal)		300Ω // 1.2μΗ				

(i) CAUTION: Electrostatic Sensitive Device. Observe precautions for handling!

- 1. The frequency $f_{\mathbb{C}}$ is defined as the midpoint between the 3dB frequencies.
- 2. Unless noted otherwise, all measurements are made with the filter installed in the specified test fixture that is connected to a 50Ω test system with VSWR≤1.2:1. The test fixture L and C are adjusted for minimum insertion loss at the filter center frequency, f_C. Note that insertion loss, bandwidth, and passband shape are dependent on the impedance matching component values and quality.
- 3. Unless noted otherwise, specifications apply over the entire specified operating temperature range.
- 4. The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- All equipment designs utilizing this product must be approved by the appropriate government agency prior to manufacture or sale.
- 6. Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- 7. For questions on technology, prices and delivery, please contact our sales offices or e-mail info@v-torch.com

www.v-torch.com Tel: 86-755-8363 5090 Fax: 86-755-8950 7007 Page 2 of 2